AI Article Synopsis

  • Graphene exhibits remarkable thermal, chemical, optical, and mechanical properties, making it increasingly popular for use in wastewater treatment.
  • Various forms of graphene materials, such as graphene oxides and quantum dots, are synthesized through methods like chemical vapor deposition and electrochemical exfoliation.
  • The review highlights the applications of these materials in removing toxic pollutants from wastewater and discusses future research directions and challenges related to their synthesis.

Article Abstract

Graphene has excellent unique thermal, chemical, optical, and mechanical properties such as high thermal conductivity, high chemical stability, optical transmittance, high current density, higher surface area, etc. Due to their outstanding properties, the attention towards graphene-based materials and their derivatives in wastewater treatment has been increased in recent times. Different graphene-based materials such as graphene oxides, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons and other graphene-based nanocomposites are synthesized through chemical vapor deposition, mechanical and electrochemical exfoliation of graphite. In this review, the specifics about the graphenes and their derivatives, the synthesis strategy of graphene-based materials are described. This review critically explained the applications of graphene-based materials in wastewater treatment. Graphene-based materials were utilized as adsorbents, electrodes, and photocatalysts for the efficient removal of toxic pollutants such as heavy metals, dyes, pharmaceutics, antibiotics, phenols, polycyclic aromatic hydrocarbons have been highlighted and discussed. Herein, the potential scope of graphene-based material in the field of wastewater treatment is critically reviewed. In addition, a brief perspective on future research directions and difficulties in the synthesis of graphene-based material are summarized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134284DOI Listing

Publication Analysis

Top Keywords

graphene-based materials
24
wastewater treatment
16
graphene-based
9
applications graphene-based
8
materials wastewater
8
graphene-based material
8
materials
6
graphene
5
insights synthesis
4
synthesis applications
4

Similar Publications

Preliminary Study to Investigate Possible Cyto-Genotoxic and Oxidative Effects of Few-Layer Graphene in Human Bronchial Cells.

Int J Mol Sci

December 2024

Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy.

Graphene and its various derivatives, known as graphene-based nanomaterials (GBNs), hold tremendous potential across many fields due to their exceptional properties. As with any novel material, concerns about their safety have emerged alongside their widespread production and use. Several studies have shown that GBNs can have diverse effects on various cell lines and organisms under different exposure conditions.

View Article and Find Full Text PDF

Study of Graphene Oxide and Silver Nanowires Interactions and Its Association with Electromagnetic Shielding Effectiveness.

Int J Mol Sci

December 2024

Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia.

Technological development has led to the need for materials able to block electromagnetic waves (EMWs) emitted from various devices. EMWs could negatively affect the working performance and lifetime of multiple instruments and measuring devices. New EMW shielding materials are being developed, while among nanomaterials, graphene-based composites have shown promising features.

View Article and Find Full Text PDF

Percutaneous Coronary Intervention (PCI) is a treatment method that involves reopening narrowed arteries with a balloon catheter that delivers a cylindrical, mesh-shaped implant device to the site of the stenosis. Currently, by applying a coating to a bare metal stent (BMS) surface to improve biocompatibility, the main risks after PCI, such as restenosis and thrombosis, are reduced while maintaining the basic requirements for the mechanical behavior of the stent itself. In this work, for the first time, the development and optimization process of the spatial structure of the Co-Cr stent (L-605) with a graphene-based coating using cold-wall chemical vapor deposition (CW-CVD) to ensure uniform coverage of the implant was attempted.

View Article and Find Full Text PDF
Article Synopsis
  • Transforming waste plastics into valuable materials can be achieved by creating graphene-based single-atom catalysts using high-density polyethylene via catalytic pyrolysis.
  • The catalyst, featuring dispersed FeNCl sites, shows significantly improved performance compared to similar catalysts without chloride, due to enhanced conductivity and efficiency in activating peroxymonosulfate (PMS).
  • Techniques like Raman and infrared spectroscopy confirm that the catalyst efficiently degrades pollutants through a non-radical oxidation process, making it suitable for continuous water treatment applications.
View Article and Find Full Text PDF

Beyond conventional characterization: Defect engineering role for sensitivity and selectivity of room-temperature UV-assisted graphene-based NO₂ sensors.

Talanta

January 2025

Instituto de Magnetismo Aplicado, UCM-ADIF, Las Rozas, 28230, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain. Electronic address:

The term graphene-based gas sensors may be too broad, as there are many physicochemical differences within the graphene-based materials (GBM) used for chemiresistive gas sensors. These differences condition the sensitivity, selectivity, recovery, and ultimately the sensing performance of these devices towards air pollutants. Continuous ultraviolet irradiation aids in the desorption of gas molecules and enhances sensor performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!