California Senate Bill 1422 requires the development of State-approved standardized methods for quantifying and characterizing microplastics in drinking water. Accordingly, we led an interlaboratory microplastic method evaluation study, with 22 participating laboratories from six countries, to evaluate the performance of widely used methods: sample extraction via filtering/sieving, optical microscopy, FTIR spectroscopy, and Raman spectroscopy. Three spiked samples of simulated clean water and a laboratory blank were sent to each laboratory with a prescribed standard operating procedure for particle extraction, quantification, and characterization. The samples contained known amounts of microparticles within four size fractions (1-20 μm, 20-212 μm, 212-500 μm, >500 μm), four polymer types (PE, PS, PVC, and PET), and six colors (clear, white, green, blue, red, and orange). They also included false positives (natural hair, fibers, and shells) that may be mistaken for microplastics. Among laboratories, mean particle recovery using stereomicroscopy was 76% ± 10% (SE). For particles in the three largest size fractions, mean recovery was 92% ± 12% SD. On average, laboratory contamination from blank samples was 91 particles (± 141 SD). FTIR and Raman spectroscopy accurately identified microplastics by polymer type for 95% and 91% of particles analyzed, respectively. Per particle, FTIR spectroscopy required the longest time for analysis (12 min ± 9 SD). Participants demonstrated excellent recovery and chemical identification for particles greater than 50 μm in size, with opportunity for increased accuracy and precision through training and further method refinement. This work has informed methods and QA/QC for microplastics monitoring in drinking water in the State of California.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134282DOI Listing

Publication Analysis

Top Keywords

drinking water
12
microplastics drinking
8
methods quantifying
8
quantifying characterizing
8
characterizing microplastics
8
ftir spectroscopy
8
raman spectroscopy
8
size fractions
8
microplastics
5
monitoring microplastics
4

Similar Publications

Unlabelled: Snow algae darken the surface of snow, reducing albedo and accelerating melt. However, the impact of subsurface snow algae (e.g.

View Article and Find Full Text PDF

The EFSA Panel on Food Contact Materials (FCM) assessed the safety of the recycling process NGR LSP (EU register number RECYC328). The input is hot washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step under high temperature and vacuum (step 4).

View Article and Find Full Text PDF

Mannose Promotes β-Amyloid Pathology by Regulating BACE1 Glycosylation in Alzheimer's Disease.

Adv Sci (Weinh)

January 2025

Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China.

Hyperglycemia accelerates Alzheimer's disease (AD) progression, yet the role of monosaccharides remains unclear. Here, it is demonstrated that mannose, a hexose, closely correlates with the pathological characteristics of AD, as confirmed by measuring mannose levels in the brains and serum of AD mice, as well as in the serum of AD patients. AD mice are given mannose by intra-cerebroventricular injection (ICV) or in drinking water to investigate the effects of mannose on cognition and AD pathological progression.

View Article and Find Full Text PDF

Background: While there are numerous benefits to tea consumption, its long-term impact on patients with chronic kidney disease (CKD) remains unclear.

Method: Our analysis included 17,575 individuals with CKD from an initial 45,019 participants in the National Health and Nutrition Examination Survey (NHANES) (1999-2018). Individuals with extreme dietary habits, pregnancy, or non-CKD conditions were excluded.

View Article and Find Full Text PDF

This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!