Ultrasonic techniques are being developed to detect changes in cancellous bone caused by osteoporosis. The goal of this study was to test the relative in vivo performance of eight backscatter parameters developed over the last several years for ultrasonic bone assessment: apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter (FIAB), normalized mean of the backscatter difference (nMBD), normalized slope of the backscatter difference (nSBD), normalized intercept of the backscatter difference (nIBD), normalized backscatter amplitude ratio (nBAR) and backscatter amplitude decay constant (BADC). Backscatter measurements were performed on the left and right femoral necks of 80 adult volunteers (age = 25 ± 11 y) using an imaging system equipped with a convex array transducer. For comparison, additional ultrasonic measurements were performed at the left and right heel using a commercially available heel-bone ultrasonometer that measured the stiffness index. Six of the eight backscatter parameters (all but nSBD and nIBD) exhibited similar and highly significant (p < 0.000001) left-right correlations (0.51 ≤ R ≤ 0.68), indicating sensitivity to naturally occurring variations in bone tissue. Left-right correlations for the stiffness index measured at the heel (R = 0.75) were not significantly better than those produced by AIB, FSAB and FIAB. The short-term precisions of AIB, nMBD, nBAR and BADC (7.8%-11.7%) were comparable to that of the stiffness index measured with the heel-bone ultrasonometer (7.5%).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2022.01.017DOI Listing

Publication Analysis

Top Keywords

backscatter
12
backscatter difference
12
ultrasonic bone
8
bone assessment
8
backscatter parameters
8
apparent backscatter
8
normalized backscatter
8
backscatter amplitude
8
measurements performed
8
performed left
8

Similar Publications

Carbon steel and low alloy steel are pearlitic heat-resistant steels with a lamellar microstructure. There are good mechanical properties and are widely used in crucial components of high-temperature pressure. However, long-term service in high-temperature environments can easily lead to material degradation, including spheroidization, graphitization, and thermal aging.

View Article and Find Full Text PDF

Titanium Oxide Formation in TiCoCrFeMn High-Entropy Alloys.

Materials (Basel)

January 2025

Faculty of Advanced Technologies and Chemistry, Military University of Technology, Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.

High-entropy materials, characterized by complex chemical compositions, are difficult to identify and describe structurally. These problems are encountered at the composition design stage when choosing an effective method for predicting the final phase structure of the alloy, which affects its functional properties. In this work, the effects of introducing oxide precipitates into the matrix of a high-entropy TiCoCrFeMn alloy to strengthen ceramic particles were studied.

View Article and Find Full Text PDF

Laser shock peening (LSP) is an effective method for enhancing the fatigue life and mechanical properties of Ti alloys. However, there is limited research on the effects of LSP on crystal structure and dislocation characteristics. In this study, Ti-6Al-4V alloy was subjected to laser shock peening with varying laser power levels.

View Article and Find Full Text PDF

Effects of Pre-Deformation in Corrosion Fatigue Crack Growth of Al-Mg-Zn Alloy.

Materials (Basel)

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.

This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a 3.

View Article and Find Full Text PDF

Bilayer TiO/Mo-BiVO Photoelectrocatalysts for Ibuprofen Degradation.

Materials (Basel)

January 2025

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!