AI Article Synopsis

Article Abstract

Effective hydrodeoxygenation (HDO) of aromatic alcohols is very attractive in both conventional organic synthesis and upgrading of biomass-derived molecules, but the selectivity of this reaction is usually low because of the competitive hydrogenation of the unsaturated aromatic ring and the hydroxyl group. The high activity of noble metal-based catalysts often leads to undesired side reactions (, saturation of the aromatic ring) and excessive hydrogen consumption. Non-noble metal-based catalysts suffer from unsatisfied activity and selectivity and often require harsh reaction conditions. Herein, for the first time, we report chemoselective HDO of various aromatic alcohols with excellent selectivity, using porous carbon-nitrogen hybrid material-supported Co catalysts. The C-OH bonds were selectively cleaved while leaving the aromatic moiety intact, and in most cases the yields of targeted compounds reached above 99% and the catalyst could be readily recycled. Nitrogen doping on the carbon skeleton of the catalyst support (C-N matrix) significantly improved the yield of the targeted product. The presence of large pores and a high surface area also improved the catalyst efficiency. This work opens the way for efficient and selective HDO reactions of aromatic alcohols using non-noble metal catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827088PMC
http://dx.doi.org/10.1039/d1sc06430dDOI Listing

Publication Analysis

Top Keywords

aromatic alcohols
16
hdo aromatic
8
aromatic ring
8
metal-based catalysts
8
aromatic
7
highly effective
4
effective chemoselective
4
chemoselective hydrodeoxygenation
4
hydrodeoxygenation aromatic
4
alcohols
4

Similar Publications

The objective of this study was to evaluate the flavor profiles of water-boiled pork meatballs at different ultrasonic powers (0, 150, 300, 450, 600, and 750 W) using solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS) combined with electronic nose (E-nose). A total of 36 volatile compounds were determined by SPME-GC-MS, including alcohols, aromatic hydrocarbons, aldehydes, terpenes, alkanes, phenols, ketones, and other. With the appropriate ultrasound treatment, the type and relative content of volatile compounds were significantly increased (P < 0.

View Article and Find Full Text PDF

As a well-known aromatic herb rich in various bioactive molecules, the extract of is widely used in cosmetics. However, the extraction process for is far from perfect. Moreover, the water- and oil-soluble components are too complex to be compatible with each other.

View Article and Find Full Text PDF

The incorporation of ZIF-67 into hydrogels for wastewater pollutant remediation has been widely studied, but the synthesis often requires organic solvents such as methanol or ethanol, which can result in the generation of toxic liquid waste. In this study, a novel hydrogel (ZIF-67@SL) was synthesized by integrating ZIF-67 into a dual-network system of sodium lignosulfonate (SL) and acrylamide (AM) using an in situ precipitation method in water. The material was characterized by XRD, FTIR, XPS, SEM, TEM, BET, and TGA analyses.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Selectivity control by zeolites during methanol-mediated CO hydrogenation processes.

Chem Soc Rev

January 2025

Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.

The thermocatalytic conversion of CO with green or blue hydrogen into valuable energy and commodity chemicals such as alcohols, olefins, and aromatics emerges as one of the most promising strategies for mitigating global warming concerns in the future. This process can follow either a CO-modified Fischer-Tropsch synthesis route or a methanol-mediated route, with the latter being favored for its high product selectivity beyond the Anderson-Schulz-Flory distribution. Despite the progress of the CO-led methanol-mediated route over bifunctional metal/zeolite catalysts, challenges persist in developing catalysts with both high activity and selectivity due to the complexity of CO hydrogenation reaction networks and the difficulty in controlling C-O bond activation and C-C bond coupling on multiple active sites within zeolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!