Background: This study sought to investigate the accuracy of estimating left atrial pressure (LAP) using the continuous wave Doppler spectrum of mitral regurgitation.

Methods: Dog models of left atrial hypertension with mitral regurgitation were established with disposable biopsy forceps and the injection of melamine formaldehyde resin microsphere suspension. A total of 40 models of left atrial hypertension with different hemodynamic statuses were established by injecting either esmolol or dobutamine in which the spectrums of mitral regurgitation were clear and the regurgitation velocity exceeded 3.5 m/s. The continuous wave Doppler spectrums of mitral regurgitation were recorded and analyzed to estimate left atrial pressure (LAP). The mean left atrial pressure (LAP), the isovolumic diastolic left atrial pressure (LAP), the maximum left atrial pressure (LAP), and the minimum left atrial pressure (LAP) were also measured using the catheter method in the same cardiac cycle.

Results: The LAP (mean ± standard deviation; 11.77±4.36 mmHg) was correlated with the LAP (11.51±4.77 mmHg; r=0.887, P=0.000), but the difference was not statistically significant (P=0.459). The LAP was correlated with the LAP (12.16±4.72 mmHg; r=0.883, P=0.000), but the difference was not statistically significant (P=0.271). There was a correlation between the LAP and the LAP (r=0.987, P=0.000), and the difference was statistically significant (P=0.000).

Conclusions: This study suggests that the ultrasound evaluation of LAP correlates well with LAP measured using the gold standard catheter method, and is a simple, convenient, non-invasive method to quantitatively estimate LAP. This method is promising, but further large-scale animal experiments and clinical studies need to be conducted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848397PMC
http://dx.doi.org/10.21037/atm-21-6913DOI Listing

Publication Analysis

Top Keywords

left atrial
36
atrial pressure
28
pressure lap
24
lap
15
continuous wave
12
wave doppler
12
mitral regurgitation
12
p=0000 difference
12
difference statistically
12
left
9

Similar Publications

Lateral Atrial Expression Patterns Provide Insights into Local Transcription Disequilibrium Contributing to Disease Susceptibility.

Circ Genom Precis Med

January 2025

CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands.

Background: Transcriptional dysregulation, possibly affected by genetic variation, contributes to disease development. Due to dissimilarities in development, function, and remodeling during disease progression, transcriptional differences between the left atrial (LA) and right atrial (RA) may provide insight into diseases such as atrial fibrillation.

Methods: Lateral differences in atrial transcription were evaluated in CATCH ME (Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly) using a 2-stage discovery and replication design.

View Article and Find Full Text PDF

Multipath joint ablation strategy for focal atrial tachycardia originating from patent foramen ovale: a case report.

Front Cardiovasc Med

January 2025

Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Introduction: Focal atrial tachycardia (FAT) is predominant in the pediatric population. Recent research has identified cases of sustained FAT originating from the interatrial septum (IAS); a subset of cases presents a unique challenge, with foci originating from the peri-patent foramen ovale (peri-PFO), requiring specialized management during catheter ablation. Here, we present a rare case of peri-PFO-associated FAT that resulted in tachycardia-related cardiomyopathy and propose a comprehensive multipath joint strategy for the successful treatment of PFO-associated FAT.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) is defined by heart failure (HF) with a left ventricular ejection fraction (LVEF) of at least 50%. HFpEF has a complex and heterogeneous pathophysiology with multiple co-morbidities contributing to its presentation. Establishing the diagnosis of HFpEF can be challenging.

View Article and Find Full Text PDF

Left Ventricular Hemodynamic Forces Changes in Fabry Disease: A Cardiac Magnetic Resonance Study.

J Magn Reson Imaging

January 2025

Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Hemodynamic force (HDF) from cardiac MRI can indicate subclinical myocardial dysfunction, and help identify early cardiac changes in patients with Fabry disease (FD). The hemodynamic change in FD patients remains unclear.

Purpose: To explore HDF changes in FD and the potential of HDF measurements as diagnostic markers indicating early cardiac changes in FD.

View Article and Find Full Text PDF

Evaluating pulmonary stenosis and regurgitation impact on cardiac strain and strain rate in a porcine model via magnetic resonance feature tracking.

Int J Cardiovasc Imaging

January 2025

University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany.

Background: Pulmonary stenosis (PS) is common in congenital heart disease and an integral finding in Tetralogy of Fallot (TOF). Pulmonary regurgitation (PR) is more commonly found following surgery in repaired TOF. We aimed to evaluate the haemodynamic effects of PS and PR on cardiac physiology in a porcine model using cardiac magnetic resonance-based feature tracking (CMR-FT) deformation imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!