A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New associations of serum β-carotene, lycopene, and zeaxanthin concentrations with , , , AND genes. | LitMetric

Variation in carotenoid bioavailability at individual and population levels might depend on host-related factors where genetic variation has a part to play. It manifests itself through the proteins involved in carotenoid intestinal absorption and metabolism, blood lipoprotein transport, or tissue uptake. This study aims to identify novel SNPs which could be associated with carotenoid serum concentrations. A total of 265 self-reported healthy individuals of Lithuanian origin were genotyped (Illumina HumanOmniExpress-12v1.0 or v1.1 and Infinium OmniExpress-24v1.2 arrays) and fasting blood serum concentrations of β- and α-carotene, β-cryptoxanthin, lycopene, lutein, and zeaxanthin were measured (Shimadzu Prominence HPLC system). According to the individual carotenoid concentrations, the cohort was subdivided into quartiles. Q1 and Q4 were used for the following association analysis. The set of 2883 SNPs in 109 potential candidate genes (assumed for a direct or indirect role in carotenoid bioavailability) was analyzed. Liver X receptor alpha () "transport" polymorphisms rs2279238 ( = 2.129 × 10) and rs11039155 ( = 2.984 × 10), and apolipoprotein B () "transport" polymorphism rs550619 ( = 4.844 × 10) were associated with higher zeaxanthin concentration. Retinol dehydrogenase 12 () "functional partner" polymorphism rs756473 ( = 7.422 × 10) was associated with higher lycopene concentration. Twenty-one cytochrome P450 (, and ) "metabolism" polymorphisms in locus 10q23.33 were significantly associated with higher β-carotene concentration. To conclude, four novel genomic loci were found to be associated with carotenoid serum levels. Zeaxanthin, lycopene, and β-carotene serum concentrations might depend on genetic variation in , , and and genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907718PMC
http://dx.doi.org/10.1002/fsn3.2705DOI Listing

Publication Analysis

Top Keywords

serum concentrations
12
associated higher
12
carotenoid bioavailability
8
genetic variation
8
associated carotenoid
8
carotenoid serum
8
carotenoid
6
concentrations
5
associated
5
associations serum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!