A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SARS-CoV-2 triggered oxidative stress and abnormal energy metabolism in gut microbiota. | LitMetric

Specific roles of gut microbes in COVID-19 progression are critical. However, the circumstantial mechanism remains elusive. In this study, shotgun metagenomic or metatranscriptomic sequencing was performed on fecal samples collected from 13 COVID-19 patients and controls. We analyzed the structure of gut microbiota, identified the characteristic bacteria, and selected biomarkers. Further, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were employed to correlate the taxon alterations and corresponding functions. The gut microbiota of COVID-19 patients was characterized by the enrichment of opportunistic pathogens and depletion of commensals. The abundance of spp. displayed an inverse relationship with COVID-19 severity, whereas , , and were positively correlated with disease severity. The genes encoding oxidoreductase were significantly enriched in gut microbiome of COVID-19 group. KEGG annotation indicated that the expression of ABC transporter was upregulated, while the synthesis pathway of butyrate was aberrantly reduced. Furthermore, increased metabolism of lipopolysaccharide, polyketide sugar, sphingolipids, and neutral amino acids were found. These results suggested the gut microbiome of COVID-19 patients was in a state of oxidative stress. Healthy gut microbiota may enhance antiviral defenses via butyrate metabolism, whereas the accumulation of opportunistic and inflammatory bacteria may exacerbate COVID-19 progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906553PMC
http://dx.doi.org/10.1002/mco2.112DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
covid-19 patients
12
oxidative stress
8
covid-19 progression
8
gut microbiome
8
microbiome covid-19
8
gut
7
covid-19
7
sars-cov-2 triggered
4
triggered oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!