Innovations in digital manufacturing enabled the fabrication of implant-supported fixed dental prostheses (ISFDPs) in a wide variety of recently introduced materials. Computer-aided design and computer-aided manufacturing (CAD-CAM) milling allows the fabrication of ISFDPs with high accuracy by reducing the fabrication steps of large-span frameworks. The longevity of ISFDPs depends on the overall mechanical properties of the framework material including its fit, and the physical properties of the veneering material and its bond with the framework. This comprehensive review summarizes the recent information on millable CAD-CAM framework materials such as pre-sintered soft alloys, fiber-reinforced composite resins, PEEK, and PEKK in high-performance polymer family, and 4Y-TZP. Even though promising results have been obtained with the use of new generation millable CAD-CAM materials for ISFDPs, clinical studies are lacking and future research should focus on the overall performance of these millable materials in both static and dynamic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906986 | PMC |
http://dx.doi.org/10.1155/2022/3074182 | DOI Listing |
Sensors (Basel)
January 2025
Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland.
This article presents the authors' design of an electronic stethoscope intended for use during online medical consultations for patient auscultation. The goal of the project was to design an instrument that is durable, user-friendly, and affordable. Existing electronic components were used to create the device and a traditional single-sided chest piece.
View Article and Find Full Text PDFSci Rep
January 2025
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
Patient-specific templating (PST), which is a sister procedure to patient-specific instrumentation (PSI) but hospital-based, is relatively less complex and less expensive than robotics and navigation. However, there are some concerns about the PST including the process of preoperative planning, 3D printing and material, positioning of PST intraoperatively, availability, and clinical value. The purpose of this study was to validate the technical accuracy and reliability of the PST technique in the lab and to report the outcomes of clinical application.
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Head and Neck Surgeon and Head, Verwelius 3D Lab, Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Statement Of Problem: A nasal prosthesis may compensate for a partial or complete defect of the nose associated with trauma or amputation. However, the design and production is time-consuming, expensive, and expertize-dependent. Computer-generated prosthesis models and 3D printing can optimize the process.
View Article and Find Full Text PDFPLoS One
January 2025
The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.
The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Conservative Dentistry, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.
Material And Methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions ( = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!