Bone marrow mesenchymal stem cells (BMSCs) can boost osteosarcoma (OS) cell proliferation and invasion, yet the function of extracellular vesicles (EVs) derived from BMSCs on OS is scarcely known. This study is aimed at examining the role of BMSC-EVs in OS cells. BMSCs and BMSC-EVs were isolated and identified. The effect of EVs and EVs-si-NORAD on OS cell proliferation, invasion, migration, and angiogenesis was determined. Expressions of NORAD, miR-877-3p, and CREBBP were detected. The binding relationship among NORAD, miR-877-3p, and CREBBP was verified. The miR-877-3p inhibitor or pc-CREBBP was delivered into OS cells treated with EVs-si-NORAD for analysis. The nude mouse model of the subcutaneous tumor xenograft was established for analysis. BMSC-EVs promoted OS cell proliferation, invasion, migration, and angiogenesis. BMSC-EVs carried NORAD into OS cells and upregulated CREBBP by sponging miR-877-3p. miR-877-3p downregulation or CREBBP overexpression partly inverted the inhibitory effect of EVs by silencing NORAD on OS cell proliferation, invasion, migration, and angiogenesis. experiments validated that BMSC-EV-derived NORAD facilitated tumor growth by upregulating CREBBP miR-877-3p. To conclude, BMSC-EV-derived NORAD facilitated OS cell proliferation, invasion, migration, and angiogenesis by modulating CREBBP miR-877-3p, which may offer new insights into OS treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906129PMC
http://dx.doi.org/10.1155/2022/8825784DOI Listing

Publication Analysis

Top Keywords

cell proliferation
20
proliferation invasion
20
invasion migration
16
migration angiogenesis
16
mir-877-3p
8
cells bmscs
8
norad mir-877-3p
8
mir-877-3p crebbp
8
bmsc-ev-derived norad
8
norad facilitated
8

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.

View Article and Find Full Text PDF

3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.

View Article and Find Full Text PDF

In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.

View Article and Find Full Text PDF

DNA damage triggers the death of green sea turtle-derived cells at high temperature.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka-city 020-8551, Japan.

As temperatures rise due to increasingly severe global warming, the effect of high temperatures on wildlife, including green sea turtles, is one of the issues that must be addressed to ensure the conservation of biodiversity. In the current study, we found that green sea turtle cell death due to apoptosis occurred at 37 °C, which suppressed cell proliferation. We also found that high temperature-induced heat stress led to the accumulation of DNA damage in green sea turtle cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!