Buildings are considered to be one of the world's largest consumers of energy. The productive utilization of energy will spare the accessible energy assets for the following ages. In this paper, we analyze and predict the domestic electric power consumption of a single residential building, implementing deep learning approach (LSTM and CNN). In these models, a novel feature is proposed, the "best N window size" that will focus on identifying the reliable time period in the past data, which yields an optimal prediction model for domestic energy consumption known as deep learning recurrent neural network prediction system with improved sliding window algorithm. The proposed prediction system is tuned to achieve high accuracy based on various hyperparameters. This work performs a comparative study of different variations of the deep learning model and records the best Root Mean Square Error value compared to other learning models for the benchmark energy consumption dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906985PMC
http://dx.doi.org/10.1155/2022/7216959DOI Listing

Publication Analysis

Top Keywords

deep learning
16
prediction system
12
neural network
8
network prediction
8
sliding window
8
window algorithm
8
power consumption
8
residential building
8
energy consumption
8
energy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!