Evaluation of the antioxidative and genotoxic effects of sodium butyrate on breast cancer cells.

Saudi J Biol Sci

Department of Biology, Faculty of Science and Literature, Kocaeli University, Kocaeli, Turkey.

Published: March 2022

AI Article Synopsis

Article Abstract

Oncogenic stimulation shows a rise in reactive oxygen species (ROS), and ROS can eventually induce carcinogenesis by causing DNA damage. In this context, this study aims to evaluate some biochemical and genotoxic changes in the control of cell death caused by NaBu (Sodium butyrate). treatment in breast cancer cells. NaBu's impact on cell proliferation was determined via WST-1 assay. The lipid peroxidation (MDA), reduced glutathione (GSH), Nitric Oxide (NO), hydrogen peroxide (HO), and superoxide dismutase (SOD) enzyme levels were determined biochemically. NaBu-induced genotoxic damage was estimated via single-cell gel electrophoresis (SCGE). NaBu reduced cell viability and potentially induced GSH, but decreased SOD enzyme activity and the level of MDA and NO decreased also HO decreased at different times and NaBu concentrations. Higher NaBu concentrations amplified DNA damage in MCF-7 cells compared to the control group. NaBu shows anticancer and genotoxic effects, especially through antioxidant enzymes, one of the oxidative stress parameters in breast cancer. However, the anticancer and genotoxic effects of NaBu is changed in the oxidative stress parameters with time and treatment concentration of NaBu in MCF-7 cells. Furthermore, his oxidative stress-dependent effect changes need to be clarified by further evaluation with molecular and more biochemical parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913555PMC
http://dx.doi.org/10.1016/j.sjbs.2021.12.061DOI Listing

Publication Analysis

Top Keywords

genotoxic effects
12
breast cancer
12
sodium butyrate
8
cancer cells
8
dna damage
8
sod enzyme
8
nabu concentrations
8
mcf-7 cells
8
anticancer genotoxic
8
oxidative stress
8

Similar Publications

Genotoxicity testing of the anthraquinone dye Alizarin Red S.

Curr Res Toxicol

December 2024

Institute of Nutrition and Food Science, Department of Food Safety, University of Bonn, Germany.

The anthraquinone dye Alizarin Red S (ARS) is used for marking live animals, specifically as a tool for monitoring the stock of the endangered European eel by marking caught fish with ARS before releasing the eels back into the wild. As ARS can be found in recaptured eels even years later, knowledge of potential health hazards of ARS is essential for assessing the food safety of eels marked with ARS. As the compound class of anthraquinones is known for their genotoxic and carcinogenic properties, concerns were raised regarding the food safety of marked eels.

View Article and Find Full Text PDF

Long-lasting and controlled-release borate as a biocide against microbial breeding in a recirculating cooling water system.

Sci Total Environ

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.

Based on the potential bactericidal properties of borate, we synthesized controlled-release borate (CRB) as a novel biocide to inhibit microbial proliferation in a recirculating cooling water system (RCS). In this study, toxicity experiments of CRB were conducted on the dominant bacteria and algae isolated from an actual RCS. The effects of CRB on biocidal performance and genotoxicity were evaluated in a simulated RCS.

View Article and Find Full Text PDF

Visualizing the DNA Damage Response in Purkinje Cells Using Cerebellar Organotypic Cultures.

J Vis Exp

December 2024

The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, School of Medicine, Tel Aviv University;

Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration.

View Article and Find Full Text PDF

The fetal brain is susceptible to programming effects during pregnancy, potentially leading to long-term consequences for offspring's cognitive health. Fructose intake is thought to adversely affect fetal brain development, whereas physical exercise before and during pregnancy may be protective. Therefore, this study aimed to assess biochemical and genotoxic changes in maternal hippocampi and behavioral, genotoxic, and biochemical alterations in offspring hippocampi.

View Article and Find Full Text PDF

seed oil for possible human consumption: A toxicological assessment of its phorbol esters.

Toxicol Rep

June 2025

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China.

seeds are known for their high oil content, and the oil extracted from these seeds has been traditionally utilized in biodiesel production. The presence of toxic compounds, specifically phorbol esters (PEs), in seed oil (JCSO) has blocked its use for human consumption. This article presents a thorough literature review that summarizes the latest research on the toxicological effects, including acute toxicity, genotoxicity, carcinogenicity, and chronic toxicity associated with phorbol esters (JCPEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!