A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Prognostic Effects of Acupuncture for Depression Using the Electroencephalogram. | LitMetric

Depression is considered to be a major public health problem with significant implications for individuals and society. Patients with depression can be with complementary therapies such as acupuncture. Predicting the prognostic effects of acupuncture has a big significance in helping physicians make early interventions for patients with depression and avoid malignant events. In this work, a novel framework of predicting prognostic effects of acupuncture for depression based on electroencephalogram (EEG) recordings is presented. Specifically, EEG, as a widely used measurement to evaluate the therapeutic effects of acupuncture, is utilized for predicting prognostic effects of acupuncture. Max-relevance and min-redundancy (mRMR), with merits of removing redundant information among selected features and remaining high relevance between selected features and response variable, is employed to select important lead-rhythm features extracted from EEG recordings. Then, according to the subject Hamilton Depression Rating Scale (HAMD) scores before and after acupuncture for eight weeks, the reduction rate of HAMD score is calculated as a measure of the prognostic effects of acupuncture. Finally, five widely used machine learning methods are utilized for building the predicting models of prognostic effects of acupuncture for depression. Experimental results show that nonlinear machine learning methods have better performance than linear ones on predicting prognostic effects of acupuncture using EEG recordings. Especially, the support vector machine with Gaussian kernel (SVM-RBF) can achieve the best and most stable performance using the mRMR with both evaluating criteria of FCD and FCQ for feature selection. Both mRMR-FCD and mRMR-FCQ obtain the same best performance, where the accuracy and score are 84.61% and 86.67%, respectively. Moreover, lead-rhythm features selected by mRMR-FCD and mRMR-FCQ are analyzed. The top seven selected lead-rhythm features have much higher mRMR evaluating scores, which guarantee the good predicting performance for machine learning methods to some degree. The presented framework in this work is effective in predicting the prognostic effects of acupuncture for depression. It can be integrated into an intelligent medical system and provide information on the prognostic effects of acupuncture for physicians. Informed prognostic effects of acupuncture for depression in advance and taking interventions can greatly reduce the risk of malignant events for patients with mental disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906952PMC
http://dx.doi.org/10.1155/2022/1381683DOI Listing

Publication Analysis

Top Keywords

effects acupuncture
44
prognostic effects
40
predicting prognostic
24
acupuncture depression
20
acupuncture
13
eeg recordings
12
lead-rhythm features
12
machine learning
12
learning methods
12
effects
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!