A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Augmented reality 3D navigation system for percutaneous CT-guided pulmonary ground-glass opacity biopsies: a comparison with the standard CT-guided technique. | LitMetric

Background: Augmented reality navigation system for percutaneous computed tomography (CT)-guided pulmonary biopsies has recently been introduced. There are no studies in literature about its use for ground glass lesions biopsies. The aim of this study is to evaluate the effectiveness of an augmented reality infrared navigation system performance on CT-guided percutaneous lung ground glass opacity (GGO) biopsy compared to a standard CT-guided technique.

Methods: A total of 80 patients with lung GGO who underwent to a percutaneous CT-guided lung biopsy with an augmented reality infrared navigation system were retrospectively enrolled in the study. Comparison was performed with a group of 80 patients who underwent to lung biopsy with the standard CT-guided technique. Evaluation of maximum lesion diameter (MLD), distance between lesion and pleural surface (DPS), distance travelled by the needle (DTP), procedural time, validity of histological sample, procedural complications and the radiation dose to the patient's chest were recorded for each patient of both groups. In addition, each group was divided into two subgroups based on lesion size, according to a cut-off of 1.5 cm (<1.5 cm; ≥1.5 cm).

Results: Augmented reality navigation system showed a significant reduction in procedural time, radiation dose administrated to patients and complications rate compared to a standard CT-guided technique. Technical success was achieved in the 100% of cases in both groups, but the diagnostical success was higher in the group where patients underwent to lung biopsies with the use of navigation system. We also found that using an augmented reality navigation system increases the diagnostical success rate for lesion <1.5 cm. MLD, DPS and DTP did not differ significantly between the two groups of patients.

Conclusions: The use of an augmented reality navigation system for percutaneous CT-guided pulmonary GGO biopsies has demonstrated a lower incidence of post-procedural complications, a significantly reduction of the radiation dose administered to patients and a higher diagnostical success rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902131PMC
http://dx.doi.org/10.21037/jtd-21-1285DOI Listing

Publication Analysis

Top Keywords

augmented reality
16
navigation system
16
standard ct-guided
12
reality navigation
8
system percutaneous
8
percutaneous ct-guided
8
ct-guided pulmonary
8
ct-guided technique
8
ground glass
8
reality infrared
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!