Three-dimensional printing (3D printing) is a promising technique for producing scaffolds for bone tissue engineering applications. Porous scaffolds can be printed directly, and the design, shape and porosity can be controlled. 3D synthetic biodegradable polymeric scaffolds intended for in situ bone regeneration must meet stringent criteria, primarily appropriate mechanical properties, good 3D design, adequate biocompatibility and the ability to enhance bone formation. In this study, healing of critical-sized (5 ​mm) femur defects of rats was enhanced by implanting two different designs of 3D printed poly(l-lactide-co-ε-caprolactone) (poly(LA-co-CL)) scaffolds seeded with rat bone marrow mesenchymal stem cells (rBMSC), which had been pre-differentiated into cartilage-forming chondrocytes. Depending on the design, the scaffolds had an interconnected porous structure of 300-500 ​μm and porosity of 50-65%. According to a computational simulation, the internal force distribution was consistent with scaffold designs and comparable between the two designs. Moreover, the defects treated with 3D-printed scaffolds seeded with chondrocyte-like cells exhibited significantly increased bone formation up to 15 weeks compared with empty defects. In all experimental animals, bone metabolic activity was monitored by positron emission tomography 1, 3, 5, 7, 11 and 14 weeks after surgery. This demonstrated a time-dependent relationship between scaffold design and metabolic activity. This confirmed that successful regeneration was highly reproducible. The and data indicated that the experimental setups had promising outcomes and could facilitate new bone formation through endochondral ossification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914554PMC
http://dx.doi.org/10.1016/j.mtbio.2022.100237DOI Listing

Publication Analysis

Top Keywords

bone formation
12
bone
9
endochondral ossification
8
bone metabolic
8
scaffolds seeded
8
metabolic activity
8
scaffolds
6
efficacy treating
4
treating segmental
4
segmental bone
4

Similar Publications

Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery.

Tissue Eng Regen Med

January 2025

Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.

Background: Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.

Methods: Thirty patients (17 male, 13 female; mean age 55.

View Article and Find Full Text PDF

Background: Currently, the pathophysiology of new bone formation in radiographic axial spondyloarthritis (r-axSpA) remains unclear. Cellular elements and their secreted bone turnover markers might be one of the underlying mechanisms that drive the new bone formation. Our study aimed to investigate the role of bone turnover markers in r-axSpA patients with fatty lesions.

View Article and Find Full Text PDF

Ultrasonographic examination of the maturational effect of maternal vitamin D use on fetal clavicle bone development.

BMC Med Imaging

January 2025

Faculty of Medicine, Department of Obstetrics and Gynecology, Erciyes University, Yenidogan Neighborhood, Turhan Baytop Street No:1, Kayseri, 38280, Turkey.

Aim: This study aimed to evaluate the effect of maternal vitamin D use during intrauterine life on fetal bone development using ultrasonographic image processing techniques.

Materials And Methods: We evaluated 52 pregnant women receiving vitamin D supplementation and 50 who refused vitamin D supplementation. Ultrasonographic imaging was performed on the fetal clavicle at 37-40 weeks of gestation.

View Article and Find Full Text PDF

Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit.

Sci China Life Sci

January 2025

Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.

Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing.

View Article and Find Full Text PDF

Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!