Effect of tea polyphenols (TP) on the quality of Chinese steamed bun (CSB) was investigated, while the interaction and action mechanism between TP and vital wheat gluten (VWG, constitutive proteins of flour) were further explored. With a low concentration (1%) of TP, CSB showed positive changes in quality, and the hardness of CSB decreased by 33.95%, while its specific volume, springiness, and resilience separately increased by 1.8%, 11.9%, and 5.5%, whereas the higher concentrations of TP (2% and 4%) caused an adverse impact. By observation of scanning electron microscope, VWG formed a fluffier structure with a low concentration of TP, while the structure deteriorated at high concentration of TP. In addition, the secondary and tertiary structures of VWG were both changed by TP. Along with the results of thermodynamic analysis (thermogravimetric and differential scanning calorimetry measurements), TP could induce the structural rearrangement of VWG. Further, a lower amidogen and sulfhydryl contents of VWG were obtained in TP groups, which illustrated that peptide and disulfide bonds of VWG were not possibly interrupted by TP. Instead, hydrophobic residues of VWG were bonded to form a more hydrophilic structure. Moreover, according to molecular docking results, epigallocatechin-3-gallate interacted tightly with VWG by hydrogen bonds and hydrophobic actions, and the action sites were mainly at hydrophobic and hydrophilic residues. All results suggested that the VWG structure was affected greatly by TP, and a low dose of TP might be potential to improve the quality of flour products. PRACTICAL APPLICATION: The physicochemical properties of gluten show the significant effects on the quality of flour products in food industry. In the present study, a low dose of tea polyphenols exhibited a strengthened effect on gluten, so as to ameliorate the texture of Chinese steamed bun (CSB) due to their tight interactions with gluten, while the color of CSB was changed to brown as tea polyphenols. All results suggested that a low dose of tea polyphenols could be potentially utilized to improve flour quality and enhance gluten strength in food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.16120 | DOI Listing |
Heliyon
January 2025
School of Forestry, Henan Agricultural University, Zhengzhou, 450046, China.
Maxim. is valued for its high oil yield, which fruit has high oil content and good health effects. However, the large amount of unsaturated fatty acids in the oil is easily oxidized, and its storage intolerance has seriously restricted its marketing.
View Article and Find Full Text PDFEnviron Toxicol
January 2025
Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China. Electronic address:
Dietary polyphenols represent a diverse group of plant-derived compounds known for their extensive biological activities, offering significant promise in the prevention and treatment of various chronic illnesses. Despite their potential, advancements in their research have been curtailed by challenges in structural analysis and limitations in existing research models. This review marks a pioneering exploration into how bile acids, gut microbiota, and the gut-brain axis serve as conduits through which dietary polyphenols can exert therapeutic effects on Inflammatory Bowel Disease (IBD).
View Article and Find Full Text PDFNutrients
January 2025
Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
Tea is a significant source of flavonoids in the diet. Due to different production processes, the amount of bioactive compounds in unfermented (green) and (semi-)fermented tea differs. Importantly, green tea has a similar composition of phenolic compounds to fresh, unprocessed tea leaves.
View Article and Find Full Text PDFMolecules
January 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China.
Lichuan black tea (LBT) is a well-known congou black tea in China, but there is relatively little research on its processing technology. Echa No. 10 is the main tea tree variety for producing LBT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!