In this study, the toxic effects of nickel oxide nanoparticles (NiO-NPs) on the model organism Mediterranean mussel (Mytilus galloprovincialis) gill, digestive gland, and hemolymph tissues for 96 h were investigated. Lipid peroxidation (MDA) determination was performed to reveal the oxidative stress generation potential of nanoparticles, and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) enzyme levels were measured to determine antioxidant responses. Lysosomal membrane stability and total hemocyte counts were performed to determine cytotoxic effects. All parameters were altered in different concentrations of NiO-NPs (2, 20, and 200 mg L). The SOD levels increased depending on the concentration (p < 0.05), and the increases in CAT, GPx, and GST levels were lower at 20 mg L concentration (p < 0.05). There was a slight difference between the exposure and the control groups in terms of GR enzyme. The MDA level increased in parallel with the concentration (p < 0.05), the stability of the cell membrane (p < 0.05), and the number of hemocyte cells decreased as a result of exposure (p < 0.05). The results emphasize that NiO-NPs may have negative effects on the aquatic environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-022-03189-4 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, Career Point University, Hamirpur Campus, H.P., India; CNST, Career Point University, Hamirpur Campus, H.P., India. Electronic address:
In our study, we have tried to enhance the biological qualities of nickel oxide nanoparticles and nanocomposites which were prepared using the extract of Aegle marmelos tree leaves and chitosan biopolymer. For in-depth study of the fabricated samples, numerous physiochemical approaches were utilized. The analysis used consists of field emission scanning electron microscopy with energy dispersive X-ray analysis and photoluminescence, X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
The present investigation seeks to customize the optical, magnetic, and structural characteristics of nickel oxide (NiO) nanopowders through chromium, iron, cobalt, copper, and zinc doping to enhance optoelectronic applications. In this regard, the preparation of pristine NiO and Ni × O (X = Cr, Fe, Co, Cu, and Zn) powders was successfully achieved through the co-precipitation method. The X-ray powder diffraction was employed to examine the prepared powders' phase formation and crystal structure characteristics.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Science, Department of Biology, Gazi University, Ankara 06500, Türkiye.
Nickel oxide nanoparticles are engineered particles that are now widely used in medicine, agriculture, and industry applications. This study aimed to investigate subchronic testicular toxicity induced by nickel oxide (NiO) and nickel oxide nanoparticles (NiONPs) in rats by comparing oral, intraperitoneal (IP), and intravenous (IV) routes of administration. Forty-two male Wistar rats were used for the study, and seven groups were formed: control group, NiO oral (150 mg/kg), NiO IP (20 mg/kg), NiO IV (1 mg/kg), NiONP oral (150 mg/kg), NiONP IP (20 mg/kg), and NiONP IV (1 mg/kg).
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.
View Article and Find Full Text PDFTalanta
December 2024
NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:
This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!