In accordance with a key role of WHIRLY1 in light-acclimation mechanisms, typical features of acclimation to high light, including photosynthesis and leaf morphology, are compromised in WHIRLY1 deficient plants. Acclimation to the environment requires efficient communication between chloroplasts and the nucleus. Previous studies indicated that the plastid-nucleus located WHIRLY1 protein is required for the communication between plastids and the nucleus in situations of high light exposure. To investigate the consequences of WHIRLY1 deficiency on the light acclimation of photosynthesis and leaf anatomy, transgenic barley plants with an RNAi-mediated knockdown of HvWHIRLY1 were compared to wild-type plants when growing at low and high irradiance. While wild-type plants showed the typical light acclimation responses, i.e. higher photosynthetic capacity and thicker leaves, the WHIRLY1 deficient plants were not able to respond to differences in irradiance. The results revealed a systemic role of WHIRLY1 in light acclimation by coordinating responses at the level of the chloroplast and the level of leaf morphology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918454PMC
http://dx.doi.org/10.1007/s00425-022-03854-xDOI Listing

Publication Analysis

Top Keywords

high light
12
light acclimation
12
role whirly1
8
photosynthesis leaf
8
leaf morphology
8
whirly1 deficient
8
deficient plants
8
wild-type plants
8
whirly1
7
acclimation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!