Members of the tristetraprolin (TTP) family of RNA binding proteins (RBPs) regulate the metabolism of a variety of mRNA targets. In mammals, these proteins modulate many physiological processes, including immune cell activation, hematopoiesis, and embryonic development. Regulation of mRNA stability by these proteins requires that the tandem zinc finger (TZF) domain binds initially and directly to target mRNAs, ultimately leading to their deadenylation and decay. Proteins of this type throughout eukarya possess a highly conserved TZF domain, suggesting that they are all capable of high-affinity RNA binding. However, the mechanism of TTP-mediated mRNA decay is largely undefined. Given the vital role that these TTP family proteins play in maintaining RNA homeostasis throughout eukaryotes, we focused here on the first, key step in this process: recognition and binding of the TZF domain to target RNA. For these studies, we chose a primitive plant, the spikemoss Selaginella moellendorffii, which last shared a common ancestor with humans more than a billion years ago. Here we report the near complete backbone and side chain resonance assignments of the spikemoss TZF domain, including: (1) the assignment of the RNA-TZF domain complex, representing one of only two data sets currently available for the entire TTP family of proteins; and (2) the first NMR resonance assignments of the entire TZF domain, in the RNA-free form. This work will serve as the basis for further NMR structural investigations aimed at gaining insights into the process of RNA recognition and the mechanisms of TTP-mediated mRNA decay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196822PMC
http://dx.doi.org/10.1007/s12104-022-10073-8DOI Listing

Publication Analysis

Top Keywords

tzf domain
20
resonance assignments
12
ttp family
12
tandem zinc
8
zinc finger
8
selaginella moellendorffii
8
rna binding
8
ttp-mediated mrna
8
mrna decay
8
family proteins
8

Similar Publications

CCCH-type tandem zinc finger (TZF) motifs are found in many RNA-binding proteins involved in regulating mRNA stability, translation, and splicing. In , several RNA-binding proteins that regulate embryonic development and cell fate determination contain CCCH TZF domains, including POS-1. Previous biochemical studies have shown that despite high levels of sequence conservation, POS-1 recognizes a broader set of RNA sequences compared to the human homologue tristetraprolin.

View Article and Find Full Text PDF

The CCND1 mRNA possesses at least two distinct lengths of the 3'-untranslated region (3'UTR), with the long isoform containing multiple AU-rich elements (AREs). The tandem zinc finger (TZF) domains of human ZFP36 family members have the capacity to bind to AREs and promote mRNA degradation. Our previous study demonstrated that mutations in the TZF domain of ZFP36L1 or ZFP36L2 increased the CCND1 expression.

View Article and Find Full Text PDF

Expression of maize OXS2a in Arabidopsis stunts plant growth but enhances heat tolerance.

Plant Sci

December 2023

Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China. Electronic address:

As plants encounter various environmental stresses, judicial allocation of resources to stress response is crucial for plant fitness. The plant OXS2 (OXIDATIVE STRESS 2) family has been reported to play important roles in growth regulation and stress response. Here, we report that the maize OXS2 family member ZmOXS2a when expressed in Arabidopsis retards growth including delayed flowering, but improves heat tolerance.

View Article and Find Full Text PDF

Precise Interference of RNA-Protein Interaction by CRISPR-Cas13-Mediated Peptide Competition.

ACS Synth Biol

October 2023

Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.

RNA-protein interactions are essential nodes of cellular regulatory circuits and play critical roles in normal physiology and disease. However, the precise roles of individual RNA-protein interactions remain elusive. Here we report a method for precise interference of endogenous RNA interacting with the RNA binding protein (RBP).

View Article and Find Full Text PDF

Members of the tristetraprolin (TTP) family of RNA binding proteins (RBPs) regulate the metabolism of a variety of mRNA targets. In mammals, these proteins modulate many physiological processes, including immune cell activation, hematopoiesis, and embryonic development. Regulation of mRNA stability by these proteins requires that the tandem zinc finger (TZF) domain binds initially and directly to target mRNAs, ultimately leading to their deadenylation and decay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!