Members of the tristetraprolin (TTP) family of RNA binding proteins (RBPs) regulate the metabolism of a variety of mRNA targets. In mammals, these proteins modulate many physiological processes, including immune cell activation, hematopoiesis, and embryonic development. Regulation of mRNA stability by these proteins requires that the tandem zinc finger (TZF) domain binds initially and directly to target mRNAs, ultimately leading to their deadenylation and decay. Proteins of this type throughout eukarya possess a highly conserved TZF domain, suggesting that they are all capable of high-affinity RNA binding. However, the mechanism of TTP-mediated mRNA decay is largely undefined. Given the vital role that these TTP family proteins play in maintaining RNA homeostasis throughout eukaryotes, we focused here on the first, key step in this process: recognition and binding of the TZF domain to target RNA. For these studies, we chose a primitive plant, the spikemoss Selaginella moellendorffii, which last shared a common ancestor with humans more than a billion years ago. Here we report the near complete backbone and side chain resonance assignments of the spikemoss TZF domain, including: (1) the assignment of the RNA-TZF domain complex, representing one of only two data sets currently available for the entire TTP family of proteins; and (2) the first NMR resonance assignments of the entire TZF domain, in the RNA-free form. This work will serve as the basis for further NMR structural investigations aimed at gaining insights into the process of RNA recognition and the mechanisms of TTP-mediated mRNA decay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196822 | PMC |
http://dx.doi.org/10.1007/s12104-022-10073-8 | DOI Listing |
Biochemistry
October 2024
Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States.
CCCH-type tandem zinc finger (TZF) motifs are found in many RNA-binding proteins involved in regulating mRNA stability, translation, and splicing. In , several RNA-binding proteins that regulate embryonic development and cell fate determination contain CCCH TZF domains, including POS-1. Previous biochemical studies have shown that despite high levels of sequence conservation, POS-1 recognizes a broader set of RNA sequences compared to the human homologue tristetraprolin.
View Article and Find Full Text PDFMol Cell Biochem
August 2024
Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
The CCND1 mRNA possesses at least two distinct lengths of the 3'-untranslated region (3'UTR), with the long isoform containing multiple AU-rich elements (AREs). The tandem zinc finger (TZF) domains of human ZFP36 family members have the capacity to bind to AREs and promote mRNA degradation. Our previous study demonstrated that mutations in the TZF domain of ZFP36L1 or ZFP36L2 increased the CCND1 expression.
View Article and Find Full Text PDFPlant Sci
December 2023
Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China. Electronic address:
As plants encounter various environmental stresses, judicial allocation of resources to stress response is crucial for plant fitness. The plant OXS2 (OXIDATIVE STRESS 2) family has been reported to play important roles in growth regulation and stress response. Here, we report that the maize OXS2 family member ZmOXS2a when expressed in Arabidopsis retards growth including delayed flowering, but improves heat tolerance.
View Article and Find Full Text PDFACS Synth Biol
October 2023
Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
RNA-protein interactions are essential nodes of cellular regulatory circuits and play critical roles in normal physiology and disease. However, the precise roles of individual RNA-protein interactions remain elusive. Here we report a method for precise interference of endogenous RNA interacting with the RNA binding protein (RBP).
View Article and Find Full Text PDFBiomol NMR Assign
April 2022
Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
Members of the tristetraprolin (TTP) family of RNA binding proteins (RBPs) regulate the metabolism of a variety of mRNA targets. In mammals, these proteins modulate many physiological processes, including immune cell activation, hematopoiesis, and embryonic development. Regulation of mRNA stability by these proteins requires that the tandem zinc finger (TZF) domain binds initially and directly to target mRNAs, ultimately leading to their deadenylation and decay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!