l-Arabinose 1-dehydrogenase (AraDH) catalyzes the NAD(P)-dependent oxidation of l-arabinose to L-arabinono-1,4-lactone in the non-phosphorylative l-arabinose pathway, and is classified into glucose-fructose oxidoreductase and short-chain dehydrogenase/reductase (SDR). We herein report the crystal structure of a SDR-type AraDH (from Herbaspirillum huttiense) for the first time. The interactions between Asp49 and the 2'- and 3'-hydroxyl groups of NAD were consistent with strict specificity for NAD. In a binding model for the substrate, Ser155 and Tyr168, highly conserved in the SDR superfamily, interacted with the C1 and/or C2 hydroxyl(s) of l-arabinose, whereas interactions between Asp107, Arg109, and Gln206 and the C2 and/or C3 hydroxyl(s) were unique to AraDH. Trp200 significantly contributed to the selectivities of the C4 hydroxyl and C6 methyl of substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.03.028 | DOI Listing |
J Integr Neurosci
December 2024
Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06519, USA.
Background: The National Institutes of Health (NIH) Toolbox Cognition Battery is increasingly being used as a standardized test to examine cognitive functioning in multicentric studies. This study examines the associations between the NIH Toolbox Cognition Battery composite scores with neuroimaging metrics using data from the Adolescent Brain Cognitive Development (ABCD) study to elucidate the neurobiological and neuroanatomical correlates of these cognitive scores.
Methods: Neuroimaging data from 5290 children (mean age 9.
JACS Au
December 2024
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware DE 19716, United States.
Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).
View Article and Find Full Text PDFJACS Au
December 2024
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345 Lingling Road, Shanghai 200032, China.
Macrocyclization is a compelling strategy for conventional drug design for improving biological activity, target specificity, and metabolic stability, but it was rarely applied to the design of PROTACs possibly due to the mechanism and structural complexity. Herein, we report the rational design of the first series of "Head-to-Tail" macrocyclic PROTACs. The resulting molecule exhibited pronounced Brd4 protein degradation with low nM DC values while almost totally dismissing the "hook effect", which is a general character and common concern of a PROTAC, in multiple cancer cell lines.
View Article and Find Full Text PDF3 Biotech
January 2025
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia.
Diabetes mellitus (DM) is a metabolic disease marked by an excessive rise in blood sugar (glucose) levels caused by a partial or total absence of insulin production, combined with alterations in the metabolism of proteins, lipids, and carbohydrates. The International Diabetes Federation estimates that 425 million individuals globally had diabetes in 2017 which will be 629 million by 2045. Several medications are used to treat DM, but they have limitations and side effects including weight gain, nausea, vomiting, and damage to blood vessels and kidneys.
View Article and Find Full Text PDFACS Appl Electron Mater
December 2024
Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria.
Germanium (Ge), the next-in-line group-IV material, bears great potential to add functionality and performance to next-generation nanoelectronics and solid-state quantum transport based on silicon (Si) technology. Here, we investigate the direct epitaxial growth of two-dimensional high-quality crystalline Ge layers on Si deposited at ultralow growth temperatures ( = 100-350 °C) and pristine growth pressures (≲10 mbar). First, we show that a decreasing does not degrade the crystal quality of homoepitaxial Ge/Ge(001) by comparing the point defect density using positron annihilation lifetime spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!