A rapid and inexpensive colour-based sediment tracing method incorporating hydrogen peroxide sample treatment as an alternative to quantitative source fingerprinting for catchment management.

J Environ Manage

Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK.

Published: March 2022

Accessible sediment provenance information is highly desirable for guiding targeted interventions for reducing excess diffuse agricultural sediment losses to water. Conventional sediment source fingerprinting methods can provide this information, but at high cost, thereby limiting their widespread application for catchment management. The use of sediment colour measured using an office document scanner represents an easy, fast, and inexpensive alternative method to trace sediment sources. However, the potential for poor source discrimination and its non-conservatism due to enrichment in sediment organic matter content during sediment transport represent possible limitations to its use. As such, the treatment of samples using hydrogen peroxide to remove organic matter can potentially improve source discrimination based upon geology or soil type, and the mapping of differences in colour between source and sediment samples removing the need for a priori source groups, were trialled in a new colour-based tracing framework. The River Avon in southwest England and Holbeck/Wath Beck in northeast England were studied as they have been identified as being of high priority for the targeting of on-farm advice delivered through a long-running agri-environment initiative. In both catchments, colour was effective at identifying that a small proportion of each which would be considered as being low erosion risk was the dominant source of the sampled sediment. This was due to poor connectivity between fields deemed to be at high risk of erosion and stream channels. The hydrogen peroxide sample treatment confirmed that sediment colour was not significantly altered by enrichment in organic matter content. This treament and the mapped comparison between source and suspended sediment colour improved source discrimination allowing for the more spatially-refined identification of critical sediment source areas. It is argued that this new inexpensive procedure can potentially deliver more precise and reliable information to catchment managers than costly quantitative sediment source fingerprinting methods. This method can greatly increase the availability of catchment-specific sediment source data and therefore the robust targeting of management efforts on a national scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.114780DOI Listing

Publication Analysis

Top Keywords

sediment source
16
sediment
15
hydrogen peroxide
12
source
12
source fingerprinting
12
sediment colour
12
source discrimination
12
organic matter
12
peroxide sample
8
sample treatment
8

Similar Publications

Comprehensive evaluation of antibiotic pollution in a typical tributary of the Yellow River, China: Source-specific partitioning and fate analysis.

J Hazard Mater

January 2025

Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China.

The partitioning and migrating of antibiotic residues pose a considerable pollution to the river environment. However, a source-specific approach for quantifying the fate of antibiotics is lacking. To further elucidate the migration behavior of antibiotics from different pollution sources in aquatic environments, we introduced a source-specific partition coefficient (S-Kp) based on Positive Matrix Factorization (PMF) model to improve the multimedia model.

View Article and Find Full Text PDF

Ocean current modulation of the spatial distribution of microplastics in the surface sediments of the Beibu Gulf, China.

J Hazard Mater

January 2025

School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.

Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.

View Article and Find Full Text PDF

Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC).

View Article and Find Full Text PDF

Autonomous Defense Based on Biogenic Nanoparticle Formation in Daunomycin-Producing .

Microorganisms

January 2025

VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic.

Daunomycin is a chemotherapeutic agent widely used for the treatment of leukemia, but its toxicity toward healthy dividing cells limits its clinical use and its production by fermentation. Herein, we describe the development of a specialized cultivation medium for daunomycin production, including a shift to oil rather than sugar as the primary carbon source. This achieved an almost threefold increase in daunomycin yields, reaching 5.

View Article and Find Full Text PDF

In this study, we use petroleum systems modeling (PSM) to quantitatively simulate the uncertainty of biogenic gas generation modes and their impact on the spatial distribution and resource assessment of gas hydrates in the Baiyun Sag, South China Sea. The results are as follows: (1) Biogenic gas generation is significantly affected by thermal state and organic matter type. Low temperature is a primary reason for gas hydrate occurrence in shallower sediments when sufficient methane gas is present.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!