Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Derangements of neuroimmune, neurotrophic and neurochemical homeostasis have important implications in psychosocial stress-induced psychopathologies. Whether quercetin, a neuroactive compound, protects against psychosocial stress-induced psychiatric disturbances particularly via neurochemical mechanisms remain less well elucidated. Therefore, we further investigated the putative neurochemical as well as other cellular mechanisms of quercetin on social-defeat stress (SDS) model of psychosocial impairments. Saline (10 mL/kg,i.p.), quercetin (25, 50 and 100 mg/kg,i.p.) and ginseng (50 mg/kg,i.p.) were given to intruder mice for 14 days. From days 7-14, ten minutes of aggressive-resident-induced SDS (physical and psychological) were conducted thirty minutes after treatments. Subsequently, behavioral assessments: open-field, light/dark board, Y-maze, novel-object recognition, social-interaction and tail-suspension tests were conducted on day 14. Adrenal weight and glucose levels were measured. Monoamines, brain-derived neurotrophic factor (BDNF), corticosterone, inflammatory cytokines (TNF-α, IL-6) and executioner caspase-3 concentrations were determined in specific brain regions by ELISA. Oxidative/nitrergic stress and cholinergic markers were determined with UV-spectrophotometry. Psychosocial stress-induced anxiety, depression and cognitive defects were improved by quercetin. The decreased serotonin in the prefrontal-cortex and dopamine in the striatum, elevated levels of noradrenaline and acetylcholinesterase in the prefrontal-cortex and hippocampus with corresponding decrease in BDNF were reversed by quercetin. Quercetin reduced SDS-induced increased neuronal inflammation, caspase-3 activity, malondialdehyde, nitrite levels, but increased antioxidant activities in the three brain regions. Adrenal hypertrophy, increased serum glucose and corticosterone release were reduced by quercetin. Our findings showed that quercetin attenuates psychosocial stress-induced passive coping behavior via normalization of HPA-axis, modulation of neurochemical release, enhancement of BDNF, and inhibition of brain oxidative/nitrergic stress, neuroinflammation and apoptotic pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2022.03.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!