Microencapsulated islet transplantation alleviates podocyte injury in diabetic nephropathy via inhibiting Notch-1 signaling.

Transpl Immunol

The First Affiliated Hospital, Wenzhou Medical University, Shangcai Cun, Ouhai Qu, Wenzhou, 325000, Zhejiang Province, China. Electronic address:

Published: June 2022

Objective: Podocyte injury has a critical role in the pathogenesis of diabetic nephropathy (DN). Microencapsulated islet transplantation (MIT) is identified as an effective method for improving the clinical condition of DN. This study aimed to explore the role and mechanism of MIT in alleviating podocyte injury in DN.

Methods: A mouse model of DN was constructed using streptozotocin (STZ). Mice were divided into 3 groups: the untreated diabetic nephropathy group (DN group), the microencapsulated islet transplantation-treated group (MIT group) and the control group. The mice were raised for 6 weeks posterior to islet transplantation to identify the role of MIT. Renal function and structure of glomerular filtration barrier were assessed by urine analysis, histopathological examination, and transmission electron microscopy. The expression levels of several proteins including Caspase-3, Bcl2/Bax, β-galactosidase, Ki-67, synaptopodin, WT-1, Jagged-1, Notch-1, and Hes-1 in renal tissues were identified via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting techniques.

Results: Compared with the DN group, the MIT group presented decreased levels of blood glucose, urinary albumin/creatinine, urea nitrogen, and serum creatinine while their body weight gradually increased. Glomerular injury in the MIT group was significantly better than that in the DN group. The MIT group indicated significantly decreased expression of Caspase-3, β-galactosidase, Bax/Bcl-2, and Ki-67 when compared with DN group, while the proportion of synaptopodin- and WT-1-positive cells was significantly increased (P < 0.05). The protein expression of Jagged-1, Notch-1, and Hes-1 in the glomerulus of the MIT group was significantly lower than that in the DN group (P < 0.05).

Conclusion: MIT alleviates podocyte injury induced by DN by inhibiting Notch-1 signaling. The identification of signaling pathways influencing podocyte restoration can help evaluate personalized medicine efficacy for patients treated with islet transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trim.2022.101579DOI Listing

Publication Analysis

Top Keywords

mit group
16
microencapsulated islet
12
islet transplantation
12
podocyte injury
12
diabetic nephropathy
12
group mit
12
group
11
compared group
8
mit
7
transplantation alleviates
4

Similar Publications

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Background: Microsatellite instability-high (MSI-high) tumors comprise ~15% of sporadic colorectal cancers (CRC) and are associated with elevated T cell infiltration. However, the universality of this response across T cell subtypes with distinct functions is unknown.

Methods: Including 1,236 CRC tumors from three observational studies, we conducted T cell profiling using a customized 9-plex (CD3, CD4, CD8, CD45RA, CD45RO, FOXP3, KRT, MKI67, and DAPI) multispectral immunofluorescence assay.

View Article and Find Full Text PDF

Background: The diagnosis and treatment of epilepsy continue to face numerous challenges, highlighting the urgent need for the development of rapid, accurate, and non-invasive methods for seizure detection. In recent years, advancements in the analysis of electroencephalogram (EEG) signals have garnered widespread attention, particularly in the area of seizure recognition.

Methods: A novel hybrid deep learning approach that combines feature fusion for efficient seizure detection is proposed in this study.

View Article and Find Full Text PDF

ZIC1 is a context-dependent medulloblastoma driver in the rhombic lip.

Nat Genet

January 2025

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Transcription factors are frequent cancer driver genes, exhibiting noted specificity based on the precise cell of origin. We demonstrate that ZIC1 exhibits loss-of-function (LOF) somatic events in group 4 (G4) medulloblastoma through recurrent point mutations, subchromosomal deletions and mono-allelic epigenetic repression (60% of G4 medulloblastoma). In contrast, highly similar SHH medulloblastoma exhibits distinct and diametrically opposed gain-of-function mutations and copy number gains (20% of SHH medulloblastoma).

View Article and Find Full Text PDF

For commercial viability, cultivated meats require scientifically informed approaches to identify and manage hazards and risks. Here we discuss food safety in the rapidly developing field of cultivated meat as it shifts from lab-based to commercial scales. We focus on what science-informed risk mitigation processes can be implemented from neighbouring fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!