A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Falnidamol and cisplatin combinational treatment inhibits non-small cell lung cancer (NSCLC) by targeting DUSP26-mediated signal pathways. | LitMetric

Non-small-cell lung cancer (NSCLC) is one of the most commonly diagnosed cancers worldwide with limited effective therapies. Cisplatin (DDP), as the first-line treatment, is always served as a mainstay of chemotherapeutic agents in combination with other drugs for NSCLC treatment. Nevertheless, DDP-based therapy is limited due to the frequent development of chemoresistance and adverse effects. Herein, it is necessary to find a more effective therapeutic approach with less toxicity. Falnidamol (FLD) is a pyrimido-pyrimidine compound and exerts anti-cancer activity. In the present study, we found that FLD could strongly promote the cytotoxicity of DDP and markedly reduce the IC values to restrain the proliferation of NSCLC cells. Furthermore, combination of FLD and DDP remarkably induced G2/M cell cycle arrest, DNA damage and mitochondrial apoptosis, which was largely through the induction of reactive oxygen species (ROS). Additionally, FLD/DDP in combination greatly triggered ferroptosis, along with free iron accumulation and enhanced lipid peroxidation. Epithelial to mesenchymal transition (EMT) and epidermal growth factor receptor (EGFR) phosphorylation were also considerably restrained in NSCLC cells co-treated with FLD/DDP. Mechanistically, the combinative treatment significantly reduced DUSP26 expression in NSCLC cells. More studies showed that DUSP26 was strongly up-regulated in human NSCLC samples compared with the paired normal tissues, and high DUSP26 predicted poor overall survival rate among patients. Importantly, we found that DUSP26 suppression intensively reduced the proliferation, EMT process and pEGFR expression in NSCLC cells, whereas facilitated ROS production, DNA damage and cell death; however, opposite phenotype was observed in NSCLC cells over-expressing DUSP26. More importantly, DUSP26 over-expression completely abolished the anti-cancer function of FLD/DDP in NSCLC cells. Animal studies finally confirmed that FLD/DDP in combination efficiently reduced tumor growth and lung metastasis in mice with ameliorated side effects. In conclusion, all these data illustrated that FLD and DDP combinational treatment effectively restrained NSCLC progression, and thus can be served as a promising therapeutic strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2022.03.003DOI Listing

Publication Analysis

Top Keywords

nsclc cells
24
nsclc
11
combinational treatment
8
lung cancer
8
cancer nsclc
8
fld ddp
8
dna damage
8
fld/ddp combination
8
restrained nsclc
8
expression nsclc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!