Methyl-CpG binding proteins (MBD) family evolution and conservation in plants.

Gene

Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil. Electronic address:

Published: May 2022

AI Article Synopsis

  • DNA methylation, mediated by methyl-CpG-binding domain proteins (MBDs), plays a crucial role in regulating gene expression by recognizing methylated cytosines and influencing chromatin states.
  • The study conducted a comprehensive analysis of MBD proteins in common bean and soybean, revealing the evolutionary conservation and functional divergence of these proteins, particularly highlighting GmMBD2's subfunctionalization after duplication events.
  • The findings suggest a significant similarity between plant and human MBD binding affinities in the mCpG context, along with the identification of conserved amino acid residues in certain MBDs, while noting substitutions in others that may affect their interactions.

Article Abstract

DNA methylation is an epigenetic mechanism that acts on cytosine residues. The methyl-CpG-binding domain proteins (MBD) are involved in the recognition of methyl-cytosines by activating a signaling cascade that induces the formation of heterochromatin or euchromatin, thereby regulating gene expression. In this study, we analyzed the evolution and conservation of MBD proteins in plants. First, we performed a genome-wide identification and analysis of the MBD family in common bean and soybean, since they have experienced one and two whole-genome duplication events, respectively. We found one pair of MBD paralogs in soybean (GmMBD2) has subfunctionalized after their recent divergence, which was corroborated with their expression profile. Phylogenetic analysis revealed that classes of MBD proteins clustered with human MBD. Interestingly, the MBD9 may have emerged after the hexaploidization event in eudicots. We found that plants and humans share a great similarity in MBDs' binding affinity in the mCpG context. MBD2 and MBD4 from different plant species have the conserved four amino acid residues -Arg (R), Asp (D), Tyr (Y) and Arg (R)- reported to be responsible for MBD-binding in the mCpG. However, MBD8, MBD9, MBD10, and MBD11 underwent substitutions in these residues, suggesting the non-interaction in the mCpG context, but a heterochromatin association as MBD5 and MBD6 from human. This study represents the first genome-wide analysis of the MBD gene family in eurosids I - soybean and common bean. The data presented here contribute towards understanding the evolution of MBDs proteins in plants and their specific binding affinity on mCpG site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2022.146404DOI Listing

Publication Analysis

Top Keywords

mbd
8
proteins mbd
8
mbd family
8
evolution conservation
8
mbd proteins
8
proteins plants
8
analysis mbd
8
common bean
8
binding affinity
8
affinity mcpg
8

Similar Publications

Carbon fibre reinforced polyetheretherketone (CFR-PEEK) implants have gained interest because of reported biomechanical advantages and radio-lucent properties. The aim of this study was to evaluate the role of CFR-PEEK nails in patients with metastatic bone disease (MBD). We performed a retrospective cohort study evaluating patients with MBD undergoing intramedullary (IM) nailing for prophylaxis or fixation of pathological fractures using CFR- PEEK or titanium implants.

View Article and Find Full Text PDF

Background: We investigated factors associated with post-transplant growth in pediatric kidney transplant (KTx) recipients with a focus on plasma bicarbonate (HCO3) and estimated the effect of alkali treatment on growth.

Methods: In this study of the CERTAIN Registry, data were collected up to 5 years post-transplant. Generalized Additive Mixed Models were applied to assess the association between post-transplant growth and covariates.

View Article and Find Full Text PDF

In 2017, Kidney Disease: Improving Global Outcomes (KDIGO) published a Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Since then, new lines of evidence have been published related to evaluating disordered mineral metabolism and bone quality and turnover, identifying and inhibiting vascular calcification, targeting vitamin D levels, and regulating parathyroid hormone. For an in-depth consideration of the new insights, in October 2023, KDIGO held a Controversies Conference on CKD-MBD: Progress and Knowledge Gaps Toward Personalizing Care.

View Article and Find Full Text PDF

Two algorithms for improving model-based diagnosis using multiple observations and deep learning.

Neural Netw

January 2025

College of Computer Science and Technology, Jilin University, Changchun, 130012, China; Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, 130012, China. Electronic address:

Model-based diagnosis (MBD) is a critical problem in artificial intelligence. Recent advancements have made it possible to address this challenge using methods like deep learning. However, current approaches that use deep learning for MBD often struggle with accuracy and computation time due to the limited diagnostic information provided by a single observation.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is characterized by uncontrolled, chronic relapsing inflammation in the gastrointestinal tract and has become a global healthcare problem. Here, we aimed to illustrate the anti-inflammatory activity and the underlying mechanism of methyl 3-bromo-4,5-dihydroxybenzoate (MBD), a compound derived from marine organisms, especially in IBD, using a zebrafish model. The results indicated that MBD could inhibit the inflammatory responses induced by CuSO, tail amputation and LPS in zebrafish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!