Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cognitive training has shown promise for improving cognition in older adults. Age-related neuroanatomical changes may affect cognitive training outcomes. White matter hyperintensities are one common brain change in aging reflecting decreased white matter integrity. The current study assessed (1) proximal cognitive training performance following a 3-month randomized control trial and (2) the contribution of baseline whole-brain white matter hyperintensity load, or total lesion volume (TLV), on pre-post proximal training change. Sixty-two healthy older adults were randomized to either adaptive cognitive training or educational training control interventions. Repeated-measures analysis of covariance revealed two-way group × time interactions such that those assigned cognitive training demonstrated greater improvement on proximal composite (total training composite) and sub-composite (processing speed training composite, working memory training composite) measures compared to education training counterparts. Multiple linear regression showed higher baseline TLV associated with lower pre-post change on processing speed training sub-composite (β = -0.19, p = 0.04), but not other composite measures. These findings demonstrate the utility of cognitive training for improving post-intervention proximal performance in older adults. Additionally, pre-post proximal processing speed training change appears to be particularly sensitive to white matter hyperintensity load versus working memory training change. These data suggest that TLV may serve as an important factor for consideration when planning processing speed-based cognitive training interventions for remediation of cognitive decline in older adults.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213634 | PMC |
http://dx.doi.org/10.1007/s11357-022-00538-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!