Glioma survival prediction from whole-brain MRI without tumor segmentation using deep attention network: a multicenter study.

Eur Radiol

Department of Neurosurgery/Neuro-oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China.

Published: August 2022

Objectives: To develop and validate a deep learning model for predicting overall survival from whole-brain MRI without tumor segmentation in patients with diffuse gliomas.

Methods: In this multicenter retrospective study, two deep learning models were built for survival prediction from MRI, including a DeepRisk model built from whole-brain MRI, and an original ResNet model built from expert-segmented tumor images. Both models were developed using a training dataset (n = 935) and an internal tuning dataset (n = 156) and tested on two external test datasets (n = 194 and 150) and a TCIA dataset (n = 121). C-index, integrated Brier score (IBS), prediction error curves, and calibration curves were used to assess the model performance.

Results: In total, 1556 patients were enrolled (age, 49.0 ± 13.1 years; 830 male). The DeepRisk score was an independent predictor and can stratify patients in each test dataset into three risk subgroups. The IBS and C-index for DeepRisk were 0.14 and 0.83 in external test dataset 1, 0.15 and 0.80 in external dataset 2, and 0.16 and 0.77 in TCIA dataset, respectively, which were comparable with those for original ResNet. The AUCs at 6, 12, 24, 26, and 48 months for DeepRisk ranged between 0.77 and 0.94. Combining DeepRisk score with clinicomolecular factors resulted in a nomogram with a better calibration and classification accuracy (net reclassification improvement 0.69, p < 0.001) than the clinical nomogram.

Conclusions: DeepRisk that obviated the need of tumor segmentation can predict glioma survival from whole-brain MRI and offers incremental prognostic value.

Key Points: • DeepRisk can predict overall survival directly from whole-brain MRI without tumor segmentation. • DeepRisk achieves comparable accuracy in survival prediction with deep learning model built using expert-segmented tumor images. • DeepRisk has independent and incremental prognostic value over existing clinical parameters and IDH mutation status.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-022-08640-7DOI Listing

Publication Analysis

Top Keywords

whole-brain mri
20
tumor segmentation
16
survival prediction
12
mri tumor
12
deep learning
12
model built
12
• deeprisk
12
deeprisk
9
glioma survival
8
learning model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!