Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Inflammatory mammary cancer (IMC), the counterpart of human inflammatory breast cancer (IBC), is the deadliest form of canine mammary tumors. IMC patients lack specific therapy and have poor outcomes. This proof-of-principle preclinical study evaluated the efficacy, safety, and effect on survival of neoadjuvant intratumoral (in situ) empty cowpea mosaic virus (eCPMV) immunotherapy in companion dogs diagnosed with IMC.
Methods: Ten IMC-bearing dogs were enrolled in the study. Five dogs received medical therapy, and five received weekly neoadjuvant in situ eCPMV immunotherapy (0.2-0.4 mg per injection) and medical therapy after the second eCPMV injection. Efficacy was evaluated by reduction of tumor growth; safety by hematological and biochemistry changes in blood and plasma; and patient outcome by survival analysis. eCPMV-induced immune changes in blood cells were analyzed by flow cytometry; changes in the tumor microenvironment were evaluated by CD3 (T lymphocytes), CD20 (B lymphocytes), FoxP3 (Treg lymphocytes), myeloperoxidase (MPO; neutrophils), Ki-67 (proliferation index, PI; tumor cell proliferation), and Cleaved Caspase-3 (CC-3; apoptosis) immunohistochemistry.
Results: Two neoadjuvant in situ eCPMV injections resulted in tumor shrinkage in all patients by day 14 without systemic adverse events. Although surgery for IMC is generally not an option, reduction in tumor size allowed surgery in two IMC patients. In peripheral blood, in situ eCPMV immunotherapy was associated with a significant decrease of Treg/CD8 ratio and changes in CD8Granzyme B T cells, which behave as a lagging predictive biomarker. In the TME, higher neutrophilic infiltration and MPO expression, lower tumor Ki-67 PI, increase in CD3 lymphocytes, decrease in FoxP3/CD3 ratio (p0.04 for all comparisons), and no changes in CC-3 immunostainings were observed in post-treatment tumor tissues when compared with pretreatment tumor samples. eCPMV-treated IMC patients had a statistically significant (p=0.033) improved overall survival than patients treated with medical therapy.
Conclusions: Neoadjuvant in situ eCPMV immunotherapy demonstrated anti-tumor efficacy and improved survival in IMC patients without systemic adverse effects. eCPMV-induced changes in immune cells point to neutrophils as a driver of immune response. Neoadjuvant in situ eCPMV immunotherapy could be a groundbreaking immunotherapy for canine IMC and a potential future immunotherapy for human IBC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919457 | PMC |
http://dx.doi.org/10.1136/jitc-2021-004044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!