Lipids are essential for healthy infant growth and development. The structural complexity of lipids in human milk is not present in infant milk formula (IF). A concept IF was developed mimicking more closely the structure and composition of human milk fat globules. The current study evaluates whether a concept IF with large, milk phospholipid-coated lipid droplets (mode diameter 3 to 5 μm) is equivalent to standard IF with regard to growth adequacy and safety in healthy, term Asian infants. In this randomized, double-blind, controlled trial, infants were randomized after parents decided to introduce formula. Infants received a standard IF with (Control) or without the specific prebiotic mixture scGOS/lcFOS (9:1 ratio; Control w/o prebiotics), or a Concept IF with large, milk phospholipid-coated lipid droplets and the prebiotic mixture. A group of 67 breastfed infants served as a reference. As a priori defined, only those infants who were fully intervention formula-fed ≤28 days of age were included in the equivalence analysis (Control n = 29; Control w/o prebiotics n = 28; Concept n = 35, per-protocol population). Primary outcome was daily weight gain during the first four months of life, with the difference between the Concept and Control as the key comparison of interest. Additionally, adverse events, growth and tolerance parameters were evaluated. Equivalence of daily weight gain was demonstrated between the Concept and Control group after additional correction for ethnicity and birthweight (difference in estimated means of 0.1 g/d, 90%CI [-2.30, 2.47]; equivalence margin +/- 3 g/d). No clinically relevant group differences were observed in secondary growth outcomes, tolerance outcomes or number, severity or relatedness of adverse events. This study corroborates that an infant formula with large, milk phospholipid-coated lipid droplets supports adequate growth and is well tolerated and safe for use in healthy infants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838783 | PMC |
http://dx.doi.org/10.3390/nu14030634 | DOI Listing |
Curr Allergy Asthma Rep
January 2025
Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Purpose Of Review: There is an increasing awareness among clinicians that industrial and household food processing methods can increase or decrease the allergenicity of foods. Modification to allergen properties through processing can enable dietary liberations. Reduced allergenicity may also allow for lower risk immunotherapy approaches.
View Article and Find Full Text PDFYogurt is a popular milk-based product known for its nutritional benefits and effects on the large intestine. However, yogurt production faces challenges like texture, consistency, and syneresis. Hydrocolloids, such as gums and polysaccharides, can enhance yogurt's consistency and rheological properties.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China; Research Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, No.403 Nanchang Road, Urumqi, Xinjiang 830091, PR China. Electronic address:
Nutrients
December 2024
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye.
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
Unlabelled: Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!