Low-grade inflammation is one of the characteristics of metabolic disorders induced by diabetes mellitus. The present study explores the underlying mechanism of milk fat globule epidermal growth factor 8 (MFG-E8) on necroptosis-induced intestinal inflammation and intestinal epithelial endocrine cell dysfunction in diabetes. Compared with the normal control group, pathological changes such as blunt and shortened villus and denuded villus tips were observed in ileum tissue of streptozotocin (STZ) induced senescence-resistant 1 (SAMR1) and senescence-accelerated prone 8 (SAMP8) diabetic mice under light microscope. Western blotting and immunohistochemistry (IHC) displayed significantly decreased protein expression of MFG-E8 in SAMR1 and SAMP8 diabetic mice, accompanied by an increased expression of phosphorylated mixed lineage kinase domain-like (p-MLKL) and HMGB1. In addition, advanced glycation end products (AGEs) significantly increased the pro-inflammatory mediators (TNF-α, IL-1β, IL-6) and HMGB1 by activating the receptor-interacting protein kinase 3 (RIPK3)/MLKL signaling pathway in enteroendocrine STC-1 cells. D-pinitol pretreatment markedly attenuated the release of pro-inflammatory mediators and increased the expression of MFG-E8. MFG-E8 small interfering RNA (siRNA) promoted, while MFG-E8 overexpression inhibited, the activation of receptor-interacting proteins (RIPs) pathway and pro-inflammatory factors. Our study demonstrated that downregulation of MFG-E8 is an important phenomenon in the pathogenesis of diabetes-related intestinal inflammatory damage. MFG-E8 overexpression and D-pinitol intervention could protect against necroptosis-induced intestinal inflammation and maintain the function of enteroendocrine STC-1 cells in diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839169PMC
http://dx.doi.org/10.3390/nu14030604DOI Listing

Publication Analysis

Top Keywords

necroptosis-induced intestinal
12
intestinal inflammation
12
mfg-e8 necroptosis-induced
8
samp8 diabetic
8
diabetic mice
8
expression mfg-e8
8
increased expression
8
pro-inflammatory mediators
8
enteroendocrine stc-1
8
stc-1 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!