Benzo[a]pyrene (BaP) causes atherosclerosis by activating the aromatic hydrocarbon receptor (AHR) signaling pathway to trigger lipid peroxidation and inflammation, thereby promoting the development of atherosclerosis. Hesperidin (Hsd), one of the 60 flavonoids of citrus, exhibits therapeutic effects on atherosclerosis. However, its antagonistic function for BaP remains unclear. In this study, the EA.hy926 cell model was used to systematically examine the antagonistic effect of Hsd with BaP, especially in low-density lipoprotein (LDL) oxidation and transport. Results showed that Hsd could reduce BaP-induced AHR activation in mRNA and protein expression level, and reduce LDL accumulation by decreasing the BaP-induced expression of advanced glycation end products and enhancing the BaP-inhibited Adenosine Triphosphate-binding cassette transporter A1 (ABCA1) protein and mRNA expression in EA.hy926 cells. In addition, Hsd could antagonize BaP-induced interaction of reactive oxygen species and the subsequent generation of oxidized LDL and malondialdehyde. Finally, Hsd could alleviate BaP-induced inflammatory response by decreasing IL-1β and TNF-α expression. All these results suggest that Hsd suppresses LDL accumulation, oxidation, and inflammatory response, and thus strongly impedes the AHR pathway activated by BaP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838654PMC
http://dx.doi.org/10.3390/nu14030574DOI Listing

Publication Analysis

Top Keywords

aromatic hydrocarbon
8
hydrocarbon receptor
8
ldl accumulation
8
inflammatory response
8
hsd
6
multifaceted protective
4
protective effects
4
effects hesperidin
4
hesperidin aromatic
4
receptor endothelial
4

Similar Publications

Background: Guidelines recognized dual combination in initial antihypertensive therapy. Studies found that low-dose quadruple combination were superior to monotherapy. However, whether low-dose quadruple therapy is better than dual combination is unknown.

View Article and Find Full Text PDF

Background: Patient safety is important in daily anesthesia practices, and providing deep anesthesia is difficult. Current debates on the optimal anesthetic agents highlight the need for safer alternatives. This study was justified by the need for safer and more effective anesthetic protocols for outpatient hysteroscopic procedures, particularly those conducted outside the operating room.

View Article and Find Full Text PDF

Background And Aim: Remimazolam has proved to be a very promising sedative drug in randomized clinical trials for usage in a wide spectrum of patients, including critically ill ones. The purpose of our study was to verify efficacy and safety of remimazolam for procedural sedation during diagnostic and first level operative endoscopy in a real-world setting.

Methods: This single centre prospective study evaluated sedation regimen with remimazolam for EGDS and fentanyl and remimazolam for colonoscopy in consecutive ASA 1-3 patients.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!