Background: 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside (TSG), the main active polyphenolic component of Polygonum multiflorum, possesses many pharmacological activities. Its anti-aging effect influences a variety of tissues with diverse mechanisms. However, the effectiveness and exact mechanisms of TSG against vascular senescence in atherosclerosis remain unclear. The present study is aimed to investigate the effects of TSG against vascular senescence in atherosclerosis both in vivo and in vitro, and the possible underlying mechanisms focusing on aortic peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated signaling cascades which have never been studied.
Methods: In vivo, 12-mo-old male LDLr mice were randomly separated into control, high-fat diet (HFD), and TSG -treatment groups. At the end of the 12 weeks, the blood samples and aorta tissues of mice were collected for further analysis. In vitro, to mimic the condition of endothelial senescence in hyperlipidemic mice, human aortic endothelial cells (HAECs) were incubated with oxidized low-density lipoprotein (ox-LDL) to induce senescence.
Results: TSG administration improved lipid profiles, ameliorated HFD-exacerbated vascular senescence and atherosclerosis. The protective effect of TSG via inhibiting telomere malfunction, oxidative stress, and mitochondrial damage was found both in vivo and in vitro. Notably, TSG administration increased aortic PGC-1α mRNA and protein expression along with the regulation of its targeted genes TERT, NRF1, TFAM, Mn-SOD, and catalase. Further, by using PGC-1α siRNA in ox-LDL-treated HAECs, it is proved that TSG reduced endothelial senescence, telomere malfunction, oxidative stress, and mitochondrial damage at least partly through activating the PGC-1α pathway.
Conclusions: These results provide new evidence for TSG in the treatment of atherosclerosis and the activation of aortic PGC-1α is involved in its beneficial effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2022.154017 | DOI Listing |
Circ Res
January 2025
British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).
Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.
Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.
Int J Cardiol Heart Vasc
February 2025
Faculty of Medicine, Tanta University, Tanta, Egypt.
Background: Aortic stenosis (AS) remains a prevalent and serious global health concern, exacerbated by an aging population worldwide. This valvular disease, when symptomatic and without appropriate intervention, severe AS can drastically reduce life expectancy. In our systematic review and -analysis, we aim to synthesize available evidence to guide clinical decision-making by comparing the performance of TAVR and SAVR, specifically in patients with severe AS and a small aortic annulus.
View Article and Find Full Text PDFFront Aging
January 2025
Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia.
Aging is a complex process marked by various changes at both cellular and systemic levels, impacting the functioning and lifespan of organisms. Over time, researchers have pinpointed several significant hallmarks of aging that lead to the gradual deterioration of tissue function, regulation, and homeostasis associated with aging in humans. Despite this, the intricate interactions and cumulative effects of these hallmarks are still mostly uncharted territory.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Geriatric Medicine, Quzhou People's Hospital, Quzhou, China.
Alzheimer's disease (AD) is a complex neurodegenerative disorder, with amyloid-beta (Aβ) aggregation playing a key role in its pathogenesis. Aβ-induced oxidative stress leads to neuronal damage, mitochondrial dysfunction, and apoptosis, making antioxidative strategies promising for AD treatment. This study investigates the effects of hydrogen-rich water (HRW) in a zebrafish AD model.
View Article and Find Full Text PDFInt J Cosmet Sci
January 2025
BioSpectrum Life Science Institute, A1805, U-TOWER, 767, Yongin, Republic of Korea.
When cellular ageing is accelerated by various extrinsic/endogenous stimuli, regenerative function deteriorates, and enriched secretomes, such as the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and cause matrix degeneration. SASPs from senescent fibroblasts exacerbate cellular senescence via autocrine signalling and also accelerate skin ageing through the induction of neighbouring cell senescence via paracrine signalling. The interaction between dermis fibroblasts and their neighbours, adipose-derived stem cells (ADSCs) in the hypodermis, which lies deep in the dermis, is a potential target for skin ageing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!