Lipid peroxidation (LPO) plays a key role in many age-related neurodegenerative conditions and other disorders. Light irradiation can initiate LPO through various mechanisms and is of importance in retinal and dermatological pathologies. The introduction of deuterated polyunsaturated fatty acids (D-PUFA) into membrane lipids is a promising approach for protection against LPO. Here, we report the protective effects of D-PUFA against the photodynamically induced LPO, using illumination in the presence of the photosensitizer trisulfonated aluminum phthalocyanine (AlPcS) in liposomes and giant unilamellar vesicles (GUV), as assessed in four experimental models: 1) sulforhodamine B leakage from liposomes, detected with fluorescence correlation spectroscopy (FCS); 2) formation of diene conjugates in liposomal membranes, measured by absorbance at 234 nm; 3) membrane leakage in GUV assessed by optical phase-contrast intensity observations; 4) UPLC-MS/MS method to detect oxidized linoleic acid (Lin)-derived metabolites. Specifically, in liposomes or GUV containing H-PUFA (dilinoleyl-sn-glycero-3-phosphatidylcholine), light irradiation led to an extensive oxidative damage to bilayers. By contrast, no damage was observed in lipid bilayers containing 20% or more D-PUFA (D2-Lin or D10-docosahexanenoic acid). Remarkably, addition of tocopherol increased the dye leakage from liposomes in H-PUFA bilayers compared to photoirradiation alone, signifying tocopherol's pro-oxidant properties. However, in the presence of D-PUFA the opposite effect was observed, whereby adding tocopherol increased the resistance to LPO. These findings suggest a method to augment the protective effects of D-PUFA, which are currently undergoing clinical trials in several neurological and retinal diseases that involve LPO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2022.112425 | DOI Listing |
Anal Chem
August 2023
West Coast Metabolomics Center, 451 Health Sci. Drive, University of California Davis, Davis, California 95616, United States.
For large-scale lipidomic analyses, accurate and reproducible quantification of endogenous lipids is crucial for comparing results within and across studies. Many lipids present in liquid chromatography-electrospray ionization-mass spectrometry form various adducts with buffer components. The mechanisms and conditions that dictate adduct formation are still poorly understood.
View Article and Find Full Text PDFEur J Neurol
December 2023
Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
Biophys J
March 2023
Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill North Carolina. Electronic address:
Long-chain polyunsaturated fatty acids (PUFAs) are prone to nonenzymatic oxidation in response to differing environmental stressors and endogenous cellular sources. There is increasing evidence that phospholipids containing oxidized PUFA acyl chains control the inflammatory response. However, the underlying mechanism(s) of action by which oxidized PUFAs exert their functional effects remain unclear.
View Article and Find Full Text PDFMech Ageing Dev
April 2023
Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, United Kingdom; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom. Electronic address:
Glaucoma is a complex neurodegenerative disease of the optic nerve that leads to irreversible sight loss. Lowering intraocular pressure (IOP) medically or surgically represents the mainstay of treatment but despite adequate treatment optic nerve function can continue to deteriorate leading to blindness. There is significant clinical and experimental evidence that oxidative stress is involved in the pathogenesis of glaucoma.
View Article and Find Full Text PDFNutrients
December 2022
Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway.
When oxidized, dietary oils generate products which have the potential to cause adverse effects on human health. The objective of the study was to investigate whether lipid oxidation products in an oxidized dietary oil can be taken up in intestinal cells, induce antioxidant stress responses and potentially be harmful. The in vitro cell model HT29 was exposed to camelina oil with different extents of oxidation, or only 4-hydroxy-2-hexenal (HHE) or 4-hydroxy-2-nonenal (HNE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!