Large slow oscillations (SO, 0.5-2 Hz) characterise slow-wave sleep and are crucial to memory consolidation and other physiological functions. Manipulating slow oscillations may enhance sleep and memory, as well as benefitting the immune system. Closed-loop auditory stimulation (CLAS) has been demonstrated to increase the SO amplitude and to boost fast sleep spindle activity (11-16 Hz). Nevertheless, not all such stimuli are effective in evoking SOs, even when they are precisely phase locked. Here, we studied what factors of the ongoing activity patterns may help to determine what oscillations to stimulate to effectively enhance SOs or SO-locked spindle activity. Hence, we trained classifiers using the morphological characteristics of the ongoing SO, as measured by electroencephalography (EEG), to predict whether stimulation would lead to a benefit in terms of the resulting SO and spindle amplitude. Separate classifiers were trained using trials from spontaneous control and stimulated datasets, and we evaluated their performance by applying them to held-out data both within and across conditions. We were able to predict both when large SOs occurred spontaneously, and whether a phase-locked auditory click effectively enlarged them with good accuracy for predicting the SO trough (∼70%) and SO peak values (∼80%). Also, we were able to predict when stimulation would elicit spindle activity with an accuracy of ∼60%. Finally, we evaluate the importance of the various SO features used to make these predictions. Our results offer new insight into SO and spindle dynamics and may suggest techniques for developing future methods for online optimization of stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2022.119055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!