Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults: A systematic review and functional neuroimaging meta-analysis.

Neurosci Biobehav Rev

Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:

Published: May 2022

Understanding how neurohormonal gut-brain signaling regulates appetite and satiety is vital for the development of therapies for obesity and altered eating behavior. However, reported brain areas associated with appetite or satiety regulators show inconsistency across functional neuroimaging studies. The aim of this study was to systematically assess the convergence of brain regions modulated by appetite and satiety regulators. Twenty-five studies were considered for qualitative synthesis, and 14 independent studies (20-experiments) found eligible for coordinate-based neuroimaging meta-analyses across 212 participants and 123 foci. We employed two different meta-analysis approaches. The results from the systematic review revealed the modulation of insula, amygdala, hippocampus, and orbitofrontal cortex (OFC) with appetite regulators, where satiety regulators were more associated with caudate nucleus, hypothalamus, thalamus, putamen, anterior cingulate cortex in addition to the insula and OFC. The two neuroimaging meta-analyses methods identified the caudate nucleus as a key area associated with satiety regulators. Our results provide quantitative brain activation maps of neurohormonal gut-brain signaling in heathy-weight adults that can be used to define alterations with eating behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096878PMC
http://dx.doi.org/10.1016/j.neubiorev.2022.104603DOI Listing

Publication Analysis

Top Keywords

appetite satiety
16
satiety regulators
16
gut-brain signaling
12
systematic review
8
functional neuroimaging
8
neurohormonal gut-brain
8
eating behavior
8
neuroimaging meta-analyses
8
caudate nucleus
8
satiety
6

Similar Publications

Sourdough bread consumption has been associated with improved glucose and appetite regulation thanks to the presence of organic acids produced during fermentation of the flour-water mixture. We investigated the effects of whole meal sourdough bread (WSB) rich in lactic acid on energy intake, satiety, gastric emptying, glucose, and C-peptide response compared to whole meal yeast bread (WYB). Forty-four normal-weight participants (age: 30 ± 10 y; BMI: 23 ± 2 kg/m) participated in this double-blind, randomized cross-over trial, consisting of two study visits separated by one week.

View Article and Find Full Text PDF

Caregivers' feeding practices shape their child's eating patterns and subsequent health. Research shows that sensitive feeding is linked to healthy development and self-regulation but depends on caregiver responsiveness to infant needs and appetite cues. Responsive feeding (RF) is influenced both by characteristics of the caregiver and expressiveness of the infant.

View Article and Find Full Text PDF

The parasubthalamic nucleus: A novel eating center in the brain.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China. Electronic address:

Eating behavior stands as a fundamental determinant of animal survival and growth, intricately regulated by an amalgamation of internal and external stimuli. Coordinated movements of facial muscles and the mandible orchestrate prey capture and food processing, propelled by the allure of taste and rewarding food properties. Conversely, satiation, pain, aversion, negative emotion or perceived threats can precipitate the cessation or avoidance of eating activities.

View Article and Find Full Text PDF

Dietary protein reduces energy intake in following meals by signaling directly or indirectly to the brain. We recently observed differences in plasma amino acid kinetics and intra-gastric behavior between micellar casein (MC) and sodium caseinate (SC) in pigs, two factors that impact food intake. Our objective was to clarify whether the supramolecular structure of casein, given as a preload to pigs, impacts on subsequent food intake.

View Article and Find Full Text PDF

Appetite-related Gut Hormone Responses to Feeding Across the Life Course.

J Endocr Soc

January 2025

The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.

Appetite-related hormones are secreted from the gut, signaling the presence of nutrients. Such signaling allows for cross-talk between the gut and the appetite-control regions of the brain, influencing appetite and food intake. As nutritional requirements change throughout the life course, it is perhaps unsurprising that appetite and eating behavior are not constant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!