Biomimetic hydrogels composed of natural polysaccharides have invariably blossomed as niche biomaterials in tissue engineering applications. The prospects of creating an extracellular matrix (ECM)-like milieu from such hydrogels has garnered considerable importance. In this study, we have fabricated bioscaffolds comprising dialdehyde alginate and xanthan gum and explored their potential use in tissue regeneration. The fabricated scaffolds displayed an interconnected porous network structure that is highly desirable for the aforesaid application. The scaffolds were endowed with good mechanical properties, thermostability, protein adsorption efficacy and degradability. Curcumin-loaded hydrogels exhibited appreciable antibacterial activity against E. coli. In vitro cytocompatibility studies revealed that the scaffolds promoted adhesion and proliferation of 3T3 fibroblast cells. The Western blot analysis of p53 gene indicated no growth arrest or apoptosis in 3T3 cells thus, signifying the non-toxic nature of the scaffolds. Furthermore, the ECM formation was confirmed via SDS-PAGE analysis. The overall results clearly validated these scaffolds as effectual biomaterials for tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.03.024 | DOI Listing |
Bioact Mater
April 2025
Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, PR China.
Peripheral nerve injury is a common clinical disease. Effective post-injury nerve repair remains a challenge in neurosurgery, and clinical outcomes are often unsatisfactory, resulting in social and economic burden. Particularly, the repair of long-distance nerve defects remains a challenge.
View Article and Find Full Text PDFBioact Mater
April 2025
Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany.
Biomaterial scaffold engineering presents great potential in promoting axonal regrowth after spinal cord injury (SCI), yet persistent challenges remain, including the surrounding host foreign body reaction and improper host-implant integration. Recent advances in mechanobiology spark interest in optimizing the mechanical properties of biomaterial scaffolds to alleviate the foreign body reaction and facilitate seamless integration. The impact of scaffold stiffness on injured spinal cords has not been thoroughly investigated.
View Article and Find Full Text PDFNPJ Biol Phys Mech
December 2024
Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
Solid tumors harbor a complex and dynamic microenvironment that hinders the delivery and efficacy of therapeutic interventions. In this study, we developed and utilized a hybrid, discrete-continuous mathematical model to explore the interplay between solid tumor growth, immune response, tumor-induced angiogenesis, and antiangiogenic drugs. By integrating published data with anti-angiogenic drugs, we elucidate three primary mechanisms by which anti-angiogenesis influences tumor progression and treatment outcomes: reduction in tumor growth rate by mitigating and temporally delaying angiogenesis, normalization of blood vessel structure and function, and improving immune cell extravasation and activation.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
Bone tissue regeneration presents a significant challenge in clinical treatment due to inadequate coordination between implant materials and reparative cells at the biomaterial-bone interfaces. This gap underscores the necessity of enhancing interaction modulation between cells and biomaterials, which is a crucial focus in bone tissue engineering. Metal-polyphenolic networks (MPN) are novel inorganic-organic hybrid complexes that are formed through coordination interactions between phenolic ligands and metal ions.
View Article and Find Full Text PDFMater Today Bio
February 2025
Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI, Dublin, Ireland.
Articular cartilage has limited capacity for repair (or for regeneration) under pathological conditions, given its non-vascularized connective tissue structure and low cellular density. Our group has successfully developed an injectable hydrogel for cartilage repair, composed of collagen type I (Col I), collagen type II (Col II), and methacrylated-hyaluronic acid (MeHA), capable of supporting chondrogenic differentiation of mesenchymal stem cells (MSCs) towards articular cartilage-like phenotypes. Recent studies have demonstrated that silencing may be an effective approach in promoting improved MSC chondrogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!