The intensification of anomalous events of seawater warming and the co-occurrence with local anthropogenic stressors are threatening coastal marine habitats, including seagrasses, which form extensive underwater meadows. Eutrophication highly affects coastal environments, potentially summing up to the widespread effects of global climate changes. In the present study, we investigated for the first time in seagrasses, the transcriptional response of different plant organs (i.e., leaf and shoot apical meristem, SAM) of the Mediterranean seagrass Posidonia oceanica growing in environments with a different history of nutrient enrichment. To this end, a mesocosm experiment exposing plants to single (nutrient enrichment or temperature increase) and multiple stressors (nutrient enrichment plus temperature increase), was performed. Results revealed a differential transcriptome regulation of plants under single and multiple stressors, showing an organ-specific sensitivity depending on plants' origin. While leaf tissues were more responsive to nutrient stress, SAM revealed a higher sensitivity to temperature treatments, especially in plants already impacted in their native environment. The exposure to stress conditions induced the modulation of different biological processes. Plants living in an oligotrophic environment were more responsive to nutrients compared to plants from a eutrophic environment. Evidences that epigenetic mechanisms were involved in the regulation of transcriptional reprogramming were also observed in both plants' organs. These results represent a further step in the comprehension of seagrass response to abiotic stressors pointing out the importance of local pressures in a global warming scenario.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.119077 | DOI Listing |
Alzheimers Dement
December 2024
University of British Columbia, Vancouver, BC, Canada.
Background: Our current understanding of the molecular mechanisms underlying amyloidogenesis in Alzheimer's Disease (AD) is limited by the lack of comprehensive models closely resembling human pathology. Human induced pluripotent stem cell (hiPSC) 3-dimensional (3D) models, such as brain organoids and neurospheres, are emerging as innovative approaches to model neurodegenerative diseases in vitro. However, they rely on hiPSC self-organization and are therefore characterized by low reproducibility and homogeneity.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India.
Landfill biomining is indeed a promising eco-friendly approach to sustainably manage and reclaim old dumpsites. Soil like fractions of < 8-10 mm size, also known as bioearth or good earth constitute a substantial part of the legacy waste. Detailed characterization is necessary to meet regulatory standards for the safe use of bioearth and minimize its environmental and human health impacts upon reuse.
View Article and Find Full Text PDFEnviron Pollut
December 2024
College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Faculty of Architecture and Engineering, Guizhou Polytechnic of Construction, Guiyang 551400, China.
Although the use of foliar spraying with organic matter has been extensively studied and applied to reduce heavy metals in plants, research on its application for reducing mercury (Hg) accumulation in plants, particularly the more toxic methylmercury (MeHg), remains scarce. Furthermore, previous researches on the barrier mechanisms of foliar spraying primarily concentrated on the effects of spraying agents on plant physiological and biochemical indicators, with limited focus on their impacts on soil environment. Herein, the dynamic effects and mechanisms of organic foliar spraying materials, including earthworm liquid fertilizer (ELF), Tween 80 (T80), and citric acid (CA), on soil Hg methylation and accumulation in lettuce were investigated using pot experiment.
View Article and Find Full Text PDFSci Total Environ
December 2024
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China. Electronic address:
The elemental dynamics and interactions within deadwood profoundly influence carbon sequestration and nutrient cycling in forest ecosystems. Recent studies have investigated macronutrient cycling during deadwood decay of specific plants, yet the dynamics and interactions of micronutrients, trace elements, and the elementome across species and decay stages remain unexplored. Here, we investigated the elementome and their coupling relationships across five decay stages of downed deadwood (DDW) from four dominant species (Hippophae rhamnoides, Populus purdomii, Abies fabri, and Picea brachytyla) along the Hailuogou Glacier primary successional chronosequence.
View Article and Find Full Text PDFSci Total Environ
December 2024
Environmental Economics (EnvEcon), Department of Engineering Management, Faculty of Business and Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium; Flanders Make@UAntwerp, 2000 Antwerp, Belgium; NANOlight Centre of Excellence, Prinsstraat 13, 2000 Antwerp, Belgium. Electronic address:
Nutrient enrichment of water bodies can lead to eutrophication, which poses a global threat to freshwater ecosystems, affecting biodiversity and water quality. While human activities have accelerated eutrophication, climate change further complicates the dynamics of nutrient cycling and ecosystem responses. Here, we provide global, spatially explicit freshwater eutrophication characterization factors, at an annual resolution from 2021 up to 2099 based on eight different climate change scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!