Various types of cells secrete extracellular vesicle (EVs) which contain proteins, lipids and nucleic acids and play important roles in inter-cellular signalling and pathological processes to impact the recipient cells. EVs have demonstrated their potential as biomarkers for disease and as therapeutic agents in regenerative medicine. In recent times, EVs derived from mesenchymal stem cells (MSCs), which are widely used as a promising medicinal product in many clinical applications, are being tested in many preclinical trials. However, the lack of standardization of MSC-derived EV isolation and analysis methods, restricts the utility of MSC-derived EVs in the clinical setting. Here, we focused on optimising the isolation method for EVs derived from MSCs. Four samples of EVs were isolated from human adipose derived MSC culture medium by differential ultracentrifugation with three different ultracentrifuge durations to investigate the influence of ultracentrifuge time on quality and quantity of MSC-derived EVs. Additionally, we used a commercial kit to extract EVs from MSC cultured medium and compared it with the ultracentrifugation method. The EV samples were then characterised for particle concentration, protein concentration, size distribution and the presence of known EV protein markers, by western blot and flow cytometry. A comparison of these results for the five samples demonstrated that 1 h of differential ultracentrifugation was optimal to isolate high quality and quantity of MSC-derived EVs from MSC cultured medium. Additionally, fluorescence imaging of the freshly isolated vs frozen EVs showed that freshly isolated EVs are taken up by cells more efficiently than frozen EVs. These finding establish a simple and reliable method of EV isolation from MSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2022.113097 | DOI Listing |
Alzheimers Dement
December 2024
The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.
Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Cognitive decline associated with Alzheimer's disease (AD) correlates with hyperphosphorylated tau (pTau) propagating between neurons along networks connected by synapses. It has been hypothesized this transcellular transmission occurs partially by extracellular vesicles (EVs). Both genetic and pharmacological inhibition of nSMase2 has been found to inhibit EV biogenesis and pTau propagation.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China.
Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.
View Article and Find Full Text PDFObjectives: While esophageal varices (EVs) are typically treated endoscopically, other options such as interventional radiology or surgical treatment are considered when endoscopic treatment is challenging. Pipeline EVs are difficult to treat endoscopically due to their large diameter, and currently, no specific treatment guidelines have been established.
Methods: We reviewed cases of pipeline EVs treated at our hospital and analyzed previously reported cases to collect evidence for the formulation of treatment guidelines.
Mol Oncol
January 2025
Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy.
Extracellular vesicle (EV) monitoring can complement clinical assessment of cancer response. In this study, patients with advanced non-small cell lung cancer (NSCLC) undergoing osimertinib, alectinib, pembrolizumab or platinum-based chemotherapy ± pembrolizumab were enrolled. EVs were characterized using Bradford assay to quantify the circulating cell-free EV protein content (cfEV), and dynamic light scattering to assess Rayleigh ratio excess at 90°, z-averaged hydrodynamic diameter and polydispersity index.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!