Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal interstitial lung disease. Currently, no treatment can block or reverse the development of lung fibrosis in patients suffering from IPF. Recent studies indicate that arsenic trioxide (ATO), a safe, effective anti-cancer pro-oxidant drug, prevents the differentiation of normal human lung fibroblasts (NHLFs) in vitro and reduces experimental pulmonary fibrosis in vivo. In this context, we investigated the anti-fibrotic effects of ATO on the main fibrosis functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and non-IPF (control) HLFs were incubated with 0.01-1 μM ATO and stimulated with pro-fibrotic factors (PDGF-BB or TGF-β1). We measured their rates of proliferation, migration and differentiation and the cell stress response triggered by ATO. ATO did not affect cell viability but strongly inhibited the proliferation and migration of PDGF-BB-stimulated IPF and control HLFs. ATO also prevented myofibroblastic differentiation, as assessed by the expression of α-smooth muscle actin (α-SMA) and collagen-1, and the phosphorylation of SMAD2/3 in TGF-β1-stimulated HLFs. These antifibrotic effects were associated with increased expression of the transcription factor NRF2 and its target genes NQO1 and HMOX1. Genetic silencing of NRF2 inhibited the ATO-induced cell stress response but did not prevent the ATO-dependent inhibition of α-SMA expression in TGF-β1-stimulated HLFs. The results demonstrate that ATO, at concentrations similar to exposure in blood plasma of ATO-treated cancer patients, counteracted pro-fibrotic activities of HLFs from IPF patients. We propose to consider ATO for clinical exploration to define the therapeutic potential in patients with IPF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2022.115972 | DOI Listing |
Cancers (Basel)
December 2024
Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
Background: Almonertinib is the initial third-generation EGFR-TKI in China, but its resistance mechanism is unknown. Cancer-associated fibroblasts (CAFs) are essential matrix components in the tumor microenvironment, but their impact on almonertinib resistance is unknown. This study aimed to explore the correlation between CAFs and almonertinib resistance in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA. Electronic address:
Extracellular matrix stiffness is one of the multiple mechanical signals that alters cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the GEF, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!