While the heat transfer and the flow dynamics in a cylindrical Rayleigh-Bénard (RB) cell are rather independent of the aspect ratio Γ (diameter/height) for large Γ, a small-Γ cell considerably stabilizes the flow and thus affects the heat transfer. Here, we first theoretically and numerically show that the critical Rayleigh number for the onset of convection at given Γ follows Ra_{c,Γ}∼Ra_{c,∞}(1+CΓ^{-2})^{2}, with C≲1.49 for Oberbeck-Boussinesq (OB) conditions. We then show that, in a broad aspect ratio range (1/32)≤Γ≤32, the rescaling Ra→Ra_{ℓ}≡Ra[Γ^{2}/(C+Γ^{2})]^{3/2} collapses various OB numerical and almost-OB experimental heat transport data Nu(Ra,Γ). Our findings predict the Γ dependence of the onset of the ultimate regime Ra_{u,Γ}∼[Γ^{2}/(C+Γ^{2})]^{-3/2} in the OB case. This prediction is consistent with almost-OB experimental results (which only exist for Γ=1, 1/2, and 1/3) for the transition in OB RB convection and explains why, in small-Γ cells, much larger Ra (namely, by a factor Γ^{-3}) must be achieved to observe the ultimate regime.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.128.084501DOI Listing

Publication Analysis

Top Keywords

aspect ratio
12
heat transfer
12
cylindrical rayleigh-bénard
8
rayleigh-bénard cell
8
almost-ob experimental
8
ultimate regime
8
ratio dependence
4
heat
4
dependence heat
4
transfer cylindrical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!