Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We introduce the concept of seeding of crystallization in time by studying the dynamics of an ensemble of coupled continuous time crystals. We demonstrate that a single subsystem in a broken-symmetry phase acting as a nucleation center may induce time-translation symmetry breaking across the entire ensemble. Seeding is observed for both coherent and dissipative coupling, as well as for a broad range of parameter regimes. In the spirit of mutual synchronization, we investigate the parameter regime where all subsystems are in the broken-symmetry phase. We observe that more broadly detuned time crystals require weaker coupling strength to be synchronized. This is in contrast to basic knowledge from classical as well as quantum synchronization theory. We show that this surprising observation is a direct consequence of the seeding effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.080603 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!