The combination of helium charge transfer dissociation mass spectrometry (He-CTD-MS) with ultrahigh performance liquid chromatography (UHPLC) is presented for the analysis of a complex mixture of acidic and neutral human milk oligosaccharides (HMOs). The research focuses on the identification of the monosaccharide sequence, the branching patterns, the sialylation/fucosylation arrangements, and the differentiation of isomeric oligosaccharides in the mixture. Initial studies first optimized the conditions for the UHPLC separation and the He-CTD-MS conditions. Results demonstrate that He-CTD is compatible with UHPLC timescales and provides unambiguous glycosidic and cross-ring cleavages from both the reducing and the nonreducing ends, which is not typically possible using collision-induced dissociation. He-CTD produces informative fragments, including 0,3An and 0,4An ions, which have been observed with electron transfer dissociation, electron detachment dissociation, and ultraviolet photodissociation (UVPD) and are crucial for differentiating the α-2,3- versus α-2,6-linked sialic acid (Neu5Ac) residues present among sialyllacto-N-tetraose HMOs. In addition to the linkage positions, He-CTD is able to differentiate structural isomers for both sialyllacto-N-tetraoses and lacto-N-fucopentaoses structures by providing unique, unambiguous cross-ring cleavages of types 0,2An, 0,2Xn, and 1,5An while preserving most of the labile Neu5Ac and fucose groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271224PMC
http://dx.doi.org/10.1093/glycob/cwac010DOI Listing

Publication Analysis

Top Keywords

transfer dissociation
12
human milk
8
milk oligosaccharides
8
ultrahigh performance
8
performance liquid
8
charge transfer
8
dissociation mass
8
mass spectrometry
8
cross-ring cleavages
8
dissociation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!