AI Article Synopsis

  • Recent research focused on creating two-dimensional oxide dodecagonal quasicrystals from thin films of SrTiO or BaTiO perovskites on a Pt(111) buffer layer.
  • The study discovered two new complex phases formed from the SrTiO film after high-temperature annealing, identifiable through techniques like low-energy electron diffraction and scanning tunneling microscopy.
  • New phases include a large square approximant with a lattice parameter of 44.4 Å and a hexagonal approximant at 28 Å, both modeled using specific tiling patterns, and showing significant differences in their electronic structures.

Article Abstract

The formation of two-dimensional oxide dodecagonal quasicrystals as well as related complex approximant phases was recently reported in thin films derived from BaTiO or SrTiO perovskites deposited on (111)-oriented Pt single crystals. Here, we use an all-thin-film approach in which the single crystal is replaced by a 10 nm thick Pt(111) buffer layer grown by molecular beam epitaxy on an AlO(0001) substrate. An ultra-thin film of SrTiO was subsequently deposited by pulsed laser deposition. The film stacking and structure are fully characterized by diffraction and microscopy techniques. We report the discovery of two new complex phases obtained by reduction of this system through high temperature annealing under ultrahigh vacuum conditions. The formation of a new large square approximant with a lattice parameter equal to 44.4 Å is evidenced by low-energy electron diffraction and scanning tunneling microscopy (STM). Additionally, a new 2D hexagonal approximant phase with a lattice parameter of 28 Å has been observed depending on the preparation conditions. Both phases can be described by two different tilings constructed with the same basic square, triangle and rhombus tiles possessing a common edge length of about 6.7 Å. Using the tiling built from high resolution STM images, we propose an atomic model for each approximant which accounts for the experimental observations. Indeed, the STM images simulated using these models are found to be in excellent agreement with the experimental ones, the bright protrusions being attributed to the topmost Sr atoms. In addition our theoretical approach shows that the adhesion of the oxide layer is rather strong (-0.30 eV Å). This is attributed to charge transfer, from the most electropositive elements (Sr and Ti) to the most electronegative ones (Pt and O), and to hybridization with Pt-states. Density of states calculations indicate differences in the electronic structure of the two approximants, suggesting different chemical and physical properties. This all-thin-film approach may be useful to explore the formation of complex two-dimensional oxide phases in other metal-oxide combinations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp05296aDOI Listing

Publication Analysis

Top Keywords

two-dimensional oxide
8
all-thin-film approach
8
lattice parameter
8
stm images
8
two-dimensional square
4
square hexagonal
4
oxide
4
hexagonal oxide
4
oxide quasicrystal
4
quasicrystal approximants
4

Similar Publications

Floatable artificial leaf to couple oxygen-tolerant CO conversion with water purification.

Nat Commun

January 2025

Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, PR China.

To enable open environment application of artificial photosynthesis, the direct utilization of environmental CO via an oxygen-tolerant reductive procedure is necessary. Herein, we introduce an in situ growth strategy for fabricating two-dimensional heterojunctions between indium porphyrin metal-organic framework (In-MOF) and single-layer graphene oxide (GO). Upon illumination, the In-MOF/GO heterostructure facilitates a tandem CO capture and photocatalytic reduction on its hydroxylated In-node, prioritizing the reduction of dilute CO even in the presence of air-level O.

View Article and Find Full Text PDF

Machine learning offers a promising avenue for expediting the discovery of new compounds by accurately predicting their thermodynamic stability. This approach provides significant advantages in terms of time and resource efficiency compared to traditional experimental and modeling methods. However, most existing models are constructed based on specific domain knowledge, potentially introducing biases that impact their performance.

View Article and Find Full Text PDF

The electrochemical nitric oxide reduction reaction (eNORR) is an efficient method for converting aqueous NO into NH. The pursuit of innovative electrocatalysts with enhanced activity, selectivity, durability, and cost-effectiveness for NORR remains a research focus. In this study, using particle swarm optimization (PSO) searches, density functional theory (DFT), and the constant-potential method (CPM), we predict two stable two-dimensional FeC monolayers, designated as α-FeC and β-FeC, as promising electrocatalysts for the NORR.

View Article and Find Full Text PDF
Article Synopsis
  • Proton exchange membrane fuel cells (PEMFCs) face challenges due to the limitations of Nafion membranes, which can degrade when exposed to strong oxidizers, prompting the need for new stable proton-conductive materials.
  • A novel material, Htimb-based PMo-based POMOFs (CUST-577), was synthesized, demonstrating excellent proton conductivity and longevity, with a proton conductivity of 8.9 × 10 S cm at 80 °C and 98% relative humidity.
  • CUST-577 also showed impressive capacitance properties in a three-electrode system, with a high specific capacitance of 308 F/g and strong retention after extensive cycling, indicating its potential
View Article and Find Full Text PDF

Synthesis of 2D NiCo-MOF/GO/CNTs flexible films for high-performance supercapacitors.

Soft Matter

January 2025

Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.

Flexible two-dimensional nickel-cobalt metal-organic frameworks/graphene oxide/carbon nanotubes (2D NiCo-MOF/GO/CNTs) hybrid films have been designed and prepared as high-performance supercapacitor electrode materials vacuum filtration. The 2D NiCo-MOF nanosheets serve as the main source of capacitance for the hybrid films, while CNTs function as both the conductive network, enhancing the electrical conductivity of the MOFs, and the binder, linking the 2D NiCo-MOF nanosheets and GO. When the mass ratio of 2D NiCo-MOF, GO, and CNTs is 2 : 1 : 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!