Dissolving pulp (DP) is a specialty pulp product from a variety of lignocellulosic biomass (i.e., hardwoods (HW) and softwoods (SW)) with a broad range of applications. Conducting life cycle assessment (LCA) for DP end applications (e.g., textile products, specialty plastics) is challenging due to the lack of life cycle inventory (LCI) data and environmental information associated with different grades. This research addresses this challenge using process simulations to generate LCI for different DP grades (e.g., acetate and viscose) made from HW and SW, respectively. The LCA results show that biomass feedstock directly affects the environmental impacts of DP. For instance, HW acetate grade has higher global warming potential than SW acetate but lower environmental impacts in other categories related to ecosystems and human health. This HW versus SW comparison has similar results for viscose DP in all impact categories except eutrophication. Additionally, a hotspot analysis identifies that on-site emissions and chemicals are the main contributors to the environmental impacts across all grades in this study. The results and LCI data generated in this work provide critical information to support future LCA and sustainability assessment for end-products derived from DP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.1c06523 | DOI Listing |
Parasitol Res
January 2025
HUN-REN Veterinary Medical Research Institute, 21, Hungária Krt, 1143, Budapest, Hungary.
The European catfish (Silurus glanis) is an important species with high economic value, and its growing demand has led to intensive farming practices for it. However, this species is increasingly challenged by parasitic infections, particularly from a specific gill monopisthocotylan parasite called Thaparocleidus vistulensis. To establish effective management strategies, it is crucial to comprehend the fundamental environmental variables that could influence the reproductive and survival behavior of T.
View Article and Find Full Text PDFVet Res Commun
January 2025
Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
Selective breeding is a potent method for developing strains with enhanced traits. This study compared the growth performance and stress responses of the genetically improved Abbassa Nile tilapia strain (G9; GIANT-G9) with a local commercial strain over 12 weeks, followed by exposure to stressors including high ammonia (10 mg TAN/L), elevated temperature (37 °C), and both for three days. The GIANT-G9 showed superior growth, including greater weight gain, final weight, length gain, specific growth rate, and protein efficiency ratio, as well as a lower feed conversion ratio and condition factor compared to the commercial strain.
View Article and Find Full Text PDFCardiol Rev
January 2025
Ghulam Muhammad Mahar Medical College, Sukkur, Pakistan.
Obstructive sleep apnea (OSA), a highly prevalent and serious disorder with significant complications, causes considerable daytime and nighttime symptoms as well as long-term consequences and is yet an underdiagnosed and inadequately treated condition. Patients with OSA undergo frequent awakenings during the sleep cycle and find it impossible to get restorative sleep. Individuals are extremely fatigued, sleepy, and irritable throughout the day.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
As the energy density of lithium-ion batteries (LIBs) increases, the shortened cycle life and the increased safety hazards of LIBs are drawing increasing concerns. To address such challenges, a series of localized high-concentration electrolytes (LHCEs) based on a solvating-solvent mixture of tetramethylene sulfone and trimethyl phosphate and a high flash-point diluent 1H,1H,5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether were designed. The LHCEs exhibited nonflammability and greatly suppressed heat release at elevated temperatures, which would potentially improve the safety performance of the LIBs.
View Article and Find Full Text PDFEcology
January 2025
Center for Ecosystem Science and Society, Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA.
Fungi play a crucial role in aquatic leaf litter decomposition. Aquatic fungi have long been thought to spend the majority of their lives in the water. Here, we explore the possibility of an amphibious life cycle, where phyllosphere fungi spend part of their life cycle in aquatic systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!