Background: Familial hypercholesterolemia (FH) is a globally underdiagnosed inherited metabolic disorder. Owing to limited published data from Arab world, this study was conducted with the aim of identifying the genetic and molecular basis of FH in highly consanguineous Saudi population.

Methods: We performed clinical screening, biochemical profiling, whole exome sequencing and variant segregation analysis of two Saudi FH families. Additionally, 500 normolipic individuals were screened to ensure the absence of FH variant in general Saudi population. Functional characterization of FH variants on secondary structure characteristics of RNA and protein molecules was performed using different bioinformatics modelling approaches.

Results: WES analysis identified two independent rare LDLR gene stop gain variants (p.C231* and p.R744*) consistent to the clinical presentation of FH patients from two different families. RNAfold analysis has shown that both variants were predicted to disturb the free energy dynamics of LDLR mRNA molecule and destabilize its folding pattern and function. PSIPRED based structural modelling analysis has suggested that both variants bring drastic changes disturbing the secondary structural elements of LDLR molecule. The p.C231* and p.R744* variants are responsible for partial or no protein product, thus they are class 1 variants causing loss of function (LoF) LDLR variants.

Conclusions: This study highlights the effectiveness of the WES, sanger sequencing, and computational analysis in expanding FH variant spectrum in culturally distinct populations like Saudi Arabia. Genetic testing of FH patients is very essential in better clinical diagnosis, screening, treatment, and management and prevention of cardiovascular disease burden in the society.

Download full-text PDF

Source
http://dx.doi.org/10.23736/S0031-0808.22.04612-2DOI Listing

Publication Analysis

Top Keywords

pc231* pr744*
12
functional characterization
8
rare ldlr
8
gain variants
8
variants pc231*
8
familial hypercholesterolemia
8
variants
7
ldlr
5
saudi
5
analysis
5

Similar Publications

Ciliary Motility: Regulation of Axonemal Dynein Motors.

Cold Spring Harb Perspect Biol

August 2017

Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455.

Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking.

View Article and Find Full Text PDF

Aging and biological sex are critical determinants of stroke outcome. Post-ischemic inflammatory response strongly contributes to the extent of ischemic brain injury, but how this response changes with age and sex is unknown. We subjected young (5-6 months), middle aged (14-15 months) and aged (20-22 months), C57BL/6 male and female mice to transient middle cerebral artery occlusion (MCAO) and found that a significant age by sex interaction influenced histological stroke outcomes.

View Article and Find Full Text PDF

Adenosine monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved signaling molecule that is emerging as one of the most important energy sensors in the body. AMPK monitors cellular energy status and is activated via phosphorylation when energy stores are low. This allows for maintenance of energy homeostasis by promoting catabolic pathways for ATP production and limiting processes that consume ATP.

View Article and Find Full Text PDF

Mutations of the KCNH2 with decreased channel activity lead to congenital long QT syndrome (LQTS). We studied the electrophysiological, glycosylation, trafficking and assembly properties of three novel KCNH2 mutations identified in Taiwanese patients with LQTS (p.N633D, p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!