Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erac081 | DOI Listing |
Int J Mol Sci
January 2025
Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
Drought is a detrimental abiotic stress that severely limits wheat growth and productivity worldwide by altering several physiological processes. Thus, understanding the mechanisms of drought tolerance is essential for the selection of drought-resilient features and drought-tolerant cultivars for wheat breeding programs. This exploratory study evaluated 14 wheat genotypes (13 relatively tolerant, one susceptible) for drought endurance based on flag leaf physiological and biochemical traits during the critical grain-filling stage in the field conditions.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Agricultural Science and Technology Information, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
Accurate photosynthetic parameters obtained from photosynthetic light-response curves (LRCs) are crucial for enhancing our comprehension of plant photosynthesis. However, the task of fitting LRCs is still demanding due to diverse variations in LRCs under different environmental conditions, as previous models were evaluated based on a limited number of leaf traits and a small number of LRCs. This study aimed to compare the performance of nine LRC models in fitting a set of 108 LRCs measured from paddy rice ( L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
Phosphorus (P) is essential for cellular processes, and P fractions within leaf tissues reflect distinct biochemical functions. However, the relationship among foliar P allocation, leaf functional traits, and soil properties in subtropical China remains poorly understood. Here, we investigated four tree species to examine the relationships among foliar P fractions (orthophosphate P, metabolic P, nucleic acid P, lipid P, and residual P), key leaf functional traits (LMA, A, and leaf [N], and P concentrations), and soil properties.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA. Electronic address:
Ochrophyta is a vast and morphologically diverse group of algae with complex plastids, including familiar taxa with fundamental ecological importance (diatoms or kelp) and a wealth of lesser-known and obscure organisms. The sheer diversity of ochrophytes poses a challenge for reconstructing their phylogeny, with major gaps in sampling and an unsettled placement of particular taxa yet to be tackled. We sequenced transcriptomes from 25 strategically selected representatives and used these data to build the most taxonomically comprehensive ochrophyte-centered phylogenomic supermatrix to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!