Cocrystallizations of diboronic acids [1,3-benzenediboronic acid (1,3-bdba), 1,4-benzenediboronic acid (1,4-bdba) and 4,4'-biphenyldiboronic acid (4,4'-bphdba)] and bipyridines [1,2-bis(4-pyridyl)ethylene (bpe) and 1,2-bis(4-pyridyl)ethane (bpeta)] generated the hydrogen-bonded 1 : 2 cocrystals [(1,4-bdba)(bpe) ] (1), [(1,4-bdba)(bpeta) ] (2), [(1,3-bdba)(bpe) (H O) ] (3) and [(1,3-bdba)(bpeta) (H O)] (4), wherein 1,3-bdba involved hydrated assemblies. The linear extended 4,4'-bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'-bphdba)(bpe)] (5) and [(4,4'-bphdba-me)(bpeta)] (6). For 6, a hemiester was generated by an in-situ linker transformation. Single-crystal X-ray diffraction revealed all structures to be sustained by B(O)-H⋅⋅⋅N, B(O)-H⋅⋅⋅O, O -H⋅⋅⋅O, O -H⋅⋅⋅N, C-H⋅⋅⋅O, C-H⋅⋅⋅N, π⋅⋅⋅π, and C-H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen-bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D-to-2D single-crystal-to-single-crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310599 | PMC |
http://dx.doi.org/10.1002/chem.202104604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!