Although cell-based or animal-based research evidence support the association of Holliday junction recognition protein (HJURP) with cancers, no pan-cancer investigation has been reported. The datasets of Gene Expression Omnibus database along with The Cancer Genome Atlas project were used to evaluate the expression of HJURP in various types of tumors. HJURP is overexpressed in a considerable number of cancers, and some changes in DNA methylation and genetic alterations are discovered in some types of tumors, such as kidney-related and adrenal gland-related tumors. Based on PrognoScan and gene expression profiling interactive analysis (GEPIA), the elevated expression of HJURP worsened the survival time of individuals with cancer. The biological general repository for interaction datasets (BioGRID) and The database for annotation, visualization and integrated discovery (DAVID) were used to establish the functional molecular network. It revealed that the cell cycle and p53 signaling pathway are the key molecular mechanisms that HJURP promotes carcinogenesis. The nomograms between HJURP and clinical pathological factors based on the Cox proportional hazards model showed a good prognostic performance in kidney carcinoma, hepatocellular carcinoma, and lung adenocarcinoma. Our first pan-cancer study provides a relatively profound insights into the oncogenic roles of HJURP across different tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854909 | PMC |
http://dx.doi.org/10.1515/med-2022-0423 | DOI Listing |
iScience
December 2024
Guangzhou Municipal Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
AT-rich sequence can cause structure variants such as translocations and its instability can be accelerated by replication stresses. When human 16p11.2 or 22q11.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA.
Long AT repeat tracts form non-B DNA structures that stall DNA replication and cause chromosomal breakage. AT repeats are abundant in human common fragile sites (CFSs), genomic regions that undergo breakage under replication stress. Using an in vivo yeast model system containing AT-rich repetitive elements from human CFS FRA16D, we find that DNA polymerase zeta (Pol ζ) is required to prevent breakage and subsequent deletions at hairpin and cruciform forming (AT/TA)n sequences, with little to no role at an (A/T)28 repeat or a control non-structure forming sequence.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Medical Research and Experimental Center, Yan'an Medical College of Yan'an University, Yan'an 716000, China.
Objectives: To investigate the role of Holliday cross-recognition protein (HJURP) in tumorigenesis, progression, and immunotherapy responses.
Methods: Bioinformatics approaches were used to analyze the expression level of in various cancers and its association with prognosis, clinical stage, and immune cell infiltration using TCGA, GTEx, SangerBox and TIMER 2.0 databases.
ACS Nano
December 2024
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark.
Multivalency as an interaction principle is widely utilized in nature. It enables specific and strong binding by multiple weak interactions through enhanced avidity and is a core process in immune recognition and cellular signaling, which is also a current concept in drug design. Here, we use the high signals from plasmon-enhanced fluorescence of nanoparticles to extract binding kinetics and dynamics of multivalent interactions on the single-molecule level and in real time.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain.
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!