Background: Acupuncture is safe and effective for functional dyspepsia (FD), while its efficacy varies among individuals. Predicting the response of different FD patients to acupuncture treatment in advance and therefore administering the tailored treatment to the individual is consistent with the principle of predictive, preventive, and personalized medicine (PPPM/3PM). In the current study, the individual efficacy prediction models were developed based on the support vector machine (SVM) algorithm and routine clinical features, aiming to predict the efficacy of acupuncture in treating FD and identify the FD patients who were appropriate to acupuncture treatment.
Methods: A total of 745 FD patients were collected from two clinical trials. All the patients received a 4-week acupuncture treatment. Based on the demographic and baseline clinical features of 80% of patients in trial 1, the SVM models were established to predict the acupuncture response and improvements of symptoms and quality of life (QoL) at the end of treatment. Then, the left 20% of patients in trial 1 and 193 patients in trial 2 were respectively applied to evaluate the internal and external generalizations of these models.
Results: These models could predict the efficacy of acupuncture successfully. In the internal test set, models achieved an accuracy of 0.773 in predicting acupuncture response and an of 0.446 and 0.413 in the prediction of QoL and symptoms improvements, respectively. Additionally, these models had well generalization in the independent validation set and could also predict, to a certain extent, the long-term efficacy of acupuncture at the 12-week follow-up. The gender, subtype of disease, and education level were finally identified as the critical predicting features.
Conclusion: Based on the SVM algorithm and routine clinical features, this study established the models to predict acupuncture efficacy for FD patients. The prediction models developed accordingly are promising to assist doctors in judging patients' responses to acupuncture in advance, so that they could tailor and adjust acupuncture treatment plans for different patients in a prospective rather than the reactive manner, which could greatly improve the clinical efficacy of acupuncture treatment for FD and save medical expenditures.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-022-00271-8.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897529 | PMC |
http://dx.doi.org/10.1007/s13167-022-00271-8 | DOI Listing |
Pediatr Rheumatol Online J
December 2024
Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Canada.
Background: Primary small vessel CNS vasculitis (sv-cPACNS) is a challenging inflammatory brain disease in children. Brain biopsy is mandatory to confirm the diagnosis. This study aims to develop and validate a histological scoring tool for diagnosing small vessel CNS vasculitis.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Infectious Disease, Department of Internal Medicine, Chonnam National University Medical School, 42, Jebong Ro, Donggu, Gwangju, 61469, South Korea.
Background: Invasive fungal infections have been reported as complications with significant mortality and morbidity in patients hospitalized with COVID-19. This study aimed to evaluate the clinical characteristics and outcomes of candidaemia patients with COVID-19 and to investigate the association between COVID-19 and mortality in candidaemia patients.
Methods: This retrospective study included candidaemia patients aged 18 years or older admitted to four university-affiliated tertiary hospitals in South Korea between January 1, 2020, and December 31, 2022.
Acad Radiol
December 2024
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China (B.W., X.H., Z.Z., Z.L., S.L.). Electronic address:
Rationale And Objectives: To develop and validate a radiomics signature, utilizing baseline and restaging CT, for preoperatively predicting progression-free survival (PFS) after neoadjuvant chemotherapy (NAC) in locally advanced gastric cancer (LAGC).
Methods: A total of 316 patients with LAGC who received NAC followed by gastrectomy were retrospectively included in this single-center study; these patients were split into two cohorts, one for training (n = 243) and the other for validation (n = 73), based on the different districts of our hospital. A total of 1316 radiomics features were extracted from the volume of interest of the gastric-cancer lesion on venous phase CT images.
Acad Radiol
December 2024
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China (P.-l.Z., T.-y.L., F.-j.L., Q.L.). Electronic address:
Rationale And Objectives: To explore the clinical and computed tomography (CT) characteristics of early-stage lung adenocarcinoma (LADC) that presents with an irregular shape.
Materials And Methods: The CT data of 575 patients with stage IA LADC and 295 with persistent inflammatory lesion (PIL) manifesting as subsolid nodules (SSNs) were analyzed retrospectively. Among these patients, we selected 233 patients with LADC and 140 patients with PIL, who showed irregular SSNs, hereinafter referred to as irregular LADC (I-LADC) and irregular PIL (I-PIL), respectively.
Acad Radiol
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:
Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).
Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!