Asthmatics are highly susceptible to developing lower respiratory tract infections caused by (SPN, the pneumococcus). It has recently emerged that underlying allergic airway disease creates a lung microenvironment that is defective in controlling pneumococcal lung infections. In the present study, we examined how house dust mite (HDM) aeroallergen exposure altered immunity to acute pneumococcal lung infection. Alveolar macrophage (AM) isolated from HDM-exposed mice expressed alternatively activated macrophage (AAM) markers including YM1, FIZZ1, IL-10, and ARG-1. , prior HDM exposure resulted in accumulation of AAMs in the lungs and 2-log higher bacterial titres in the bronchoalveolar (BAL) fluid of SPN-infected mice (Day 2). Acute pneumococcal infection further increased the expression of IL-10 and ARG1 in the lungs of HDM-exposed mice. Moreover, prior HDM exposure attenuated neutrophil extracellular traps (NETs) formation in the lungs and dsDNA levels in the BAL fluid of SPN-infected mice. In addition, HDM-SPN infected animals had significantly increased BAL fluid cellularity driven by an influx of macrophages/monocytes, neutrophils, and eosinophils. Increased lung inflammation and mucus production was also evident in HDM-sensitised mice following acute pneumococcal infection, which was associated with exacerbated airway hyperresponsiveness. Of note, PCV13 vaccination modestly reduced pneumococcal titres in the BAL fluid of HDM-exposed animals and did not prevent BAL inflammation. Our findings provide new insights on the relationship between pneumococcal lung infections and allergic airways disease, where defective AM phagocytosis and NETosis are implicated in increased susceptibility to pneumococcal infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902390PMC
http://dx.doi.org/10.3389/fphar.2022.835848DOI Listing

Publication Analysis

Top Keywords

pneumococcal lung
16
bal fluid
16
acute pneumococcal
12
pneumococcal infection
12
house dust
8
dust mite
8
phagocytosis netosis
8
pneumococcal
8
lung infection
8
lung infections
8

Similar Publications

Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection.

View Article and Find Full Text PDF

Orally administered immunomodulatory lactobacilli can stimulate respiratory immunity and enhance the resistance to primary infections with bacterial and viral pathogens. However, the potential beneficial effects of immunomodulatory lactobacilli against respiratory superinfection have not been evaluated. In this work, we showed that the feeding of infant mice with CRL1505 or MPL16 strains can reduce susceptibility to the secondary pneumococcal infection produced after the activation of TLR3 in the respiratory tract or after infection with RVS.

View Article and Find Full Text PDF

China is experiencing a demographic shift as its population ages. The elderly population becomes increasingly susceptible to pneumonia. Pneumonia in the elderly is characterized by its insidious onset, rapid progression, multiple comorbidities, poor prognosis, and high morbidity and mortality.

View Article and Find Full Text PDF

Diabetes impairs IFNγ-dependent antibacterial defense in the lungs.

Mucosal Immunol

December 2024

Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany. Electronic address:

Diabetes mellitus is associated with an increased risk of pneumonia, often caused by so-called typical and atypical pathogens including Streptoccocus pneumoniae and Legionella pneumophila, respectively. Here, we employed a variety of mouse models to investigate how diabetes influences pulmonary antibacterial immunity. Following intranasal infection with S.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease: Lifestyle Impact.

Int J Prev Med

November 2024

Department of Nutrition and Dietetics, School of Allied Health Sciences, Faridabad, Haryana, India.

Article Synopsis
  • Respiratory infections are a major global health issue, responsible for 7.5 million deaths annually, highlighting their impact on both health and economics.
  • Chronic obstructive pulmonary disease (COPD) arises from lifestyle choices and environmental factors, necessitating interventions like smoking cessation, healthy diets, and physical activity to improve lung health.
  • European health initiatives focus on early detection and prevention through awareness campaigns, vaccination programs, and nutritional support to reduce the incidence and severity of respiratory diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!