Ultrasound stimulation is expected to be useful for transcranial local and deep stimulation of the brain, which is difficult to achieve using conventional electromagnetic stimulation methods. Previous ultrasound stimulation experiments have used various types of acute preparations, including hippocampus slices from rodents and Caenorhabditis elegans tissue. For preparations, researchers have used the cortices of rodents as targets for transcranial ultrasound stimulation. However, no previous studies have used ultrasound stimulation in rodent cortical slices to examine the mechanisms of ultrasound-driven central neural circuits. Here we demonstrate the optimal experimental conditions for an ultrasound stimulation system for measuring activity in brain slices using a multielectrode array substrate. We found that the peak amplitudes of the ultrasound-evoked cortical responses in the brain slices depend on the intensities and durations of the ultrasound stimulation parameters. Thus, our findings provide a new experimental setup that enables activation of a brain slice ultrasound stimulation. Accordingly, our results indicate that choosing the appropriate ultrasound waveguide structure and stimulation parameters is important for producing the desired intensity distribution in a localized area within a brain slice. We expect that this experimental setup will facilitate future exploration of the mechanisms of ultrasound-driven neural activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902160PMC
http://dx.doi.org/10.3389/fnins.2022.824142DOI Listing

Publication Analysis

Top Keywords

ultrasound stimulation
28
brain slices
12
stimulation
10
ultrasound-driven neural
8
responses brain
8
ultrasound
8
mechanisms ultrasound-driven
8
stimulation parameters
8
experimental setup
8
brain slice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!